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П Р Е Д И С Л О В И Е 

В этом мемуаре излагаются новые результаты по аддитивной теории 
простых чисел, начала которой положил академик И. М. Виноградов 
и развивал автор. Работы Виноградова, проложившие новые пути, воспро­
изведены с упрощениями и видоизменениями в главах V и VI. Для чтения 
мемуара не требуется никаких предварительных знаний, за исключением 
одной теоремы, принадлежащей Siegel и Walfish. 

Большая часть мемуара представляет собой систематическое изложение 
результатов, полученных автором и публикуемых впервые. 

Автор едва ли мог бы преувеличить, в какой мере он обязан академику 
Виноградову. 

Помощь в подготовке рукописи оказали г-н Чжун и г-н Мин. 
В заключение автор хотел бы выразить свою горячую благодарность 

Академии Наук СССР за благоприятную оценку его труда. В эти тяжелые 
дни нам особенно придает бодрость то, что плоды наших научных ис­
следований удостаиваются одобрения со стороны высоких академических 
авторитетов самого дружественного народа. Такое культурное сотрудни­
чество ценно всегда, а в настоящий момент оно приобретает особенное 
значение. Пусть опубликование этого мемуара послужит укреплению 
истинной дружбы и взаимной доброжелательности между двумя великими 
народами. 

Хуа Ло-Кен 
18 февраля 1941 г. Национальный университет Цзин-Хуа 

г. Куньмин, Китай 

После нескольких лет войны академик И. М. Виноградов любезно 
предоставил мне возможность посетить СССР. С большим удовлетворением 
я узнал, что мой мемуар, написанный в 1940—1941 гг., находится в печати. 
В 1942 г. академик Виноградов уточнил свой метод, о чем автор до своего 
приезда в Москву совсем не знал. Его уточнение усиливает теорему 
о среднем значении (теорему 7 мемуара). Посредством этой теоремы 
мы можем улучшить теоремы 8, 9, 11, 13, 17 и др. Например, теорема 
11 верна для s ̂  10&2 logf k, а теорема 13 справедлива при s ^ s0 ~ 4klogk 
и т. д. 

В заключение я должен выразить свою признательность профессору 
Б. И. Сегалу и Д. А. Василькову за перевод этого мемуара. 

Хуа Ло-Кен 
17 апреля 1946 г., Москва 

* П р и м е ч а н и е р е д а к ц и и . Эта работа поступила в редакцию Трудов Матема­
тического института в 1941 г., но в связи с условиями военного времени 1941—1945 гг., 
j убликуется только сейчас. 



П О Я С Н Е Н И Я 

Общего введения к мемуару нет. Результаты резюмированы в первых 
параграфах соответствующих глав. Всюду в работе используются 
следующие обозначения: 

При z вещественном [z] означает наибольшее целое число 
a {z\—расстояние от z до ближайшего целого числа. 

e(z) = e2*<*. 

к озйачает целое число; Р—большое целое число, a L = logP. 
C(û, 6 , . . . , g) означает некоторое положительное число, зависящее 

от а, Ь,.. .,g; е — произвольно малое положительное число, не обязательно 
каждый раз одно и то же. 

/ (х) = 0(<р(л:)), или /(х)<^<р (л:) означает, что 

l /WKC((. , i , . . . f g )?W. 
Формулируя теоремы, мы не пользуемся символом О. В доказатель­

стве константа в символе О (или<^) зависит от постоянных, заклю­
чающихся в формулировке соответствующей теоремы. 



ГЛАВА I 

Тригонометрические суммы* 

1« Формулировка теоремы и основной леммы 

Т е о р е м а 1. Пусть f(x) полином £-ой степени с целыми коэффи­
циентами: 

f(x) — akx • • • ч - с ^ + ао, 

Если (al9.. .,auq) — l, то 
/ (* ) 

я = 1 

где e — произвольно малое положительное число. 
Для краткости мы пишем 

Я а = { » eq(x) = 

Я7=1 

О с н о в н а я л е м м а (лемма 1.1). Если pXifl^* • •> ai)» т о 

2. Вывод теоремы из основной леммы 

Л е м м а 1.2. Пусть v(gr ) означает число различных простых множи­
телей q и d(q) — число положительных делителей qm Тогда 

_1 

Д о к а з а т е л ь с т в о . Если простое число р>2*, то 

d(pl) _ / - * - ! ^ / - t - 1 /~ь1 

pZe — ри ^ 2' — (i-biy ^ / ^ 1 — А -

* Автор употребляет термин мexponential sums".— П р и м . р е д . 
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Если же простое число /><^2 8 , то 

d(pl) _ / - * - ! ^ / ^ 1 ^ / + 1 ^ 2 
р Ъ р1г ^ 2 Ь ^ / e b f f 2 ^ е 1 о ? 2 

, </ = / 7 1

1 

<у. Тогда 
Пусть q—pl*"PÎ> г Д е Л>• • • fPa — различные простые множителв 

^ = П ^ » < П _ л _ = м , , 

Первое неравенство очевидно. 
Лемма 1.3. Если (q19q2) = l и / ( 0 ) = 0, то 

S f a n <7г> f(x)) = ^(4iff(92^)l92)'S(g2ff(gix)lq1). 

Д о к а з а т е л ь с т в о . Пусть x=q1y-*-q2z. Тогда, если г/ияпробе-
гают полные системы вычетов соответственно по модулям q2 и q1% 

то х пробегает полную систему вычетов по модулю qx q2* Имеем, очевидно,, 

е

Я 1 н (/(<7i У 4% * ) ) = % (f(qi у) \qx) eqi (f(q2 z) / q2) 

и 

= 2 2 е^(Я1У)1Чг)ед1(/(Ч^)1яо 
у=г *=г 

= (q1,f(q2x)lqt)S(q29f(q1x)jq1). 

Д о к а з а т е л ь с т в о т е о р е м ы . Мы можем предположить, не нарушая 

общности, что а0 — 0. Пусть q—p\l . . где ft,.. .ft различные простые 

множители q. По лемме 1.3 

В силу леммы 1.1 имеем 

Так как, по лемме 1.2 (мы можем предположить с 2 > 1 ) , 

то мы получаем нашу теорему. 
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3. Доказательство основной леммы для / = 1 (Mordeil)* 

Мы можем предположить, не нарушая общности, что p^>k и а0 — 0.. 
р 

Для краткости мы пишем ^ ] вместо ^ ] • Имеем 

2* 

= 2 - - - 2 2 - - - 2 2 - - - 2 «л^-- • • - л 1 ) -

где iV означает число решений системы сравнений 

х х * х * = -*-St* (mod р), 1 < А < * , 1<дг, у^р, (1) 

так как 
* f <7, если ?/А, 

я = 1 I 0 , если <7^Л. 

Воспользовавшись известной теоремой о симметрических функциях,, 
можем вывести из (1) 

(х—хг) • • - {х—х^ = (х — уг) • • - (х—#Ä)(mod/>). 

Отсюда следует, что числа . .9yk сравнимы соответственно с числами 
одной из перестановок чисел х19...9хъ (mod/?). Поэтому 

Следовательно 

2*--2 i^fe^-b...-*-«i*)r<^u. <2> 
Очевидно, 

для любых целых A ( = 0(mod/>)) и ̂ . Всевозможные суммы такого вида 
встречаются в левой части ( 2 ) . Найдем число сумм S(p9f(lx-h-^)—/(fO)* 
происходящих из всех различных многочленов /(ллг-Ь}л)—/([*•) . Два 
многочлена считаются одинаковыми (modp), если их соответствующие 
коэффициенты сравнимы друг с другом (mod р). Мы можем предположить, 
не нарушая общности, что рХаъ. Если/(X*-+-*(/.)—/(^) одинаково с р f(x), то 

аъ 1Ъ = ак, каь Vе"1 -+- aJr^.1 X*- 1 == ак^г (mod р). 

Quarterly Journ. of Math., 3 (1932), 161—167. 
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Число значений \ удовлетворяющих сравнению X* = 1 (mod />), будет 
Для фиксированного X число \ь определяется однозначно. Таким 

образом, имеется самое большее к многочленов /(Хдг-ьр.)—/((л) одина­
ковых с f(x). 

Следовательно, среди многочленов 

/ ( b r - f - t O - Z k ) , i < > < / > — l , 1 < М - < Р 

дмеется по меньшей мере р(р —1)1 к различных. Поэтому 

ap(p-l)\S<p,f(x)\*^Up*t 

|5(p,/W)|<(̂ ê̂ ) р < ( 2 * . * ! ) ' > - . (3) 

4« Необходимые леммы 

О п р е д е л е н и е . Пусть* рь\\^с^9 * = m i n ( 4 , . . . , 4 ) (t^O). Пусть 
s—наибольшее целое такое, что p*lsas. Мы считаем, по определению, 
что f(x) имеет индекс s и употребляем обозначение s = md/(x). 

Л е м м а 1.4. mdf(x) = indf(x-*-'k). 
Доказательство леммы очевидно, если рассмотреть f(x). 
Л е м м а 1.5. md/(x)^ind/(pjir). 
Доказательство такое же, как и доказательство леммы 1.4. 
Лемма 1.6. Если indf(x)=mdf(px\ то из f(x) = 0(modpi+1) сле­

дует р\х. 
Д о к а з а т е л ь с т в о . По определению, la^/#/ для любого sr и, по 

предположению, 18 -+- s ̂  -+- s'. Таким образом, l8 < lj для s!^= s; в самом 
деле, если s>$\ 4 ^ / у — s + s ' < / 4 / и если s < V > то это является 
очевидным следствием определения. Но тогда из /'(.xrJ^Ofmod//"1"1) 
следует 

sas х8"1 = 0 (mod рм). 

5« Доказательство основной леммы 

Пусть суть различные корни сравнения f (x) = 0(modpM). 
Так как число решений сравнения р~* f (л:) = 0 (mod р) будет ^к—1, 
то е^.р*(к—1). Так как рХ(а19...,ах) и Я* I то имеем 
р**^к и, следовательно, e<^Jâ. 

* р*\\А означает р* | Л, р***1"11-4, т. е. р \ х. 



Тригонометрические суммы 

Допустим, что / < 2 ( * н ~ 1 ) . Если * = 0, то имеем / = 1 , и 
«следует из п. 3. Если t ^ l , то / ^ 2 * ч - 1 ^ 3 * и 

2 

Теперь мы предположим, что / ^ 2 ( * - ь 1 ) . Очевидно, 

pi pt+i pi 

2v(/<*»=2 2 
л = 1 

ac=v(modfj'+I) 

Если v не является одним из корней X, то, полагая л: 
имеем 

Dl—t—l mt+l 

2 2 2 vor )̂-|-̂ " /̂̂ ))= 
jc=v (mod̂ *+1) 

e = 1 * = 1 
#=*(raod.p*+i) 

= 2 9 ( / ( ? ) ) 2 ^ / ( y ) ) = ° . 
y = v(modi)*+i) 

ж = 1 

так как ff*"1 If (g). 
Поэтому 

2 ^ 0 4 * » 

2 2 VCK*» 
fc=l as=l , 

s~X»(modp*+i) 

2 v - w f e w ) 

^ e max 

: e max 
ж = 1 

где pw—наивысшая степень p9 делящая все коэффициенты 

Полагаем 

f(\ + p M x)-f0^)=gt(x)p». 

Так как рХ(аЪ9* • ••%), то, очевидно, имеем 
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Поэтому 

epl(f(x)) 
X-l 

^emax р^-*-1 

< e max pw(i-«) 

2 
Я=1 

с-

2 v-wte<(*)) 

Если ind/(x) = indft(4 то полагаем Ф ( х ) = / ( * - н \ ) ; тогда имеем 

ind Ф (рм х) = indf(pM л: ч- л.) = ind g i (х) р « = ind/(*) = ind Ф (х\ 

по лемме 1.4. По лемме 1.5, ind Ф (рх) = ind Ф (х). По лемме 1.6, и» 
Ф/(;с) = 0(пк^/>*"1"1) следует /?|х. Таким образом, 

L 

p i - . 

2 epi-*(s(y)} 

jpî—l I j>'—V-

y=l y=l 

так как ( l a ^ l . Таким образом, в этом случае соответствующий множи­
тель е равен 1. В других случаях, е^к2. 

Если применить этот метод последовательно, то не более чем на к шагах 
получится множитель к2, а на остальных получится множитель 1, поэтому 

б* Следствия 

Прежде чем формулировать следствия теоремы, мы введем понятие 
о многочленах с целыми значениями. 

О п р е д е л е н и е . Говорят, что f(x) является многочленом с целыми 
значениями, если f(x) является целым для каждого целого х. 

Л е м м а 1.7. Необходимое и достаточное условие того, чтобы много­
член был с целыми значениями, заключается в том, что он может быть, 
представлен в виде 

<h F i (*) •+-••• -+~ <*i Fx (х) Чг а09 

где коэффициенты а суть целые и 

vlFv(*) = * ( * — !)•. .(*— v-bl) . 
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Д о к а з а т е л ь с т в о . Очевидно, Fv{x) есть многочлен с целыми 
значениями, поэтому ak Fk (х) . . . -+- аг Fx (х) -н а0 есть многочлен с целыми 
значениями. 

Предположим теперь, что f(x) есть многочлен с целыми значениями 
и пусть 

/ (х) = Ъь F, (х) - н . . . + Ьг Fx (х) ч - Ь0. 

Полагая последовательно х = О,1,2, . . . , £, мы убеждаемся в том, что 
коэффициенты Ъ являются целыми. 

Мы можем теперь формулировать следующие следствия из теоремы 
и основной леммы. 

С л е д с т в и е 1.1, Пусть f(x) — многочлен с целыми значениями 
степени к с общим наименьшим знаменателем d. Пусть р \\ d. Предположим, 
что не все числители коэффициентов f(x) делятся на р. Тогда 

рш 

Я=1 

< С 4 

Д о к а з а т е л ь с т в о . Так как d\к\9 то мы получаем это следствие. 
С л е д с т в и е 1.2. Предположим, что f(x) есть многочлен с целыми 

значениями степени к с общим наименьшим знаменателем d; допу­
стим, что не существует простого числа р, для которого сравнение 
f(x) = f(0) (modp) имело бы место тождественно. Тогда 

2 
Х=1 

где q = q*(d,q). 
С л е д с т в и е 1.3. При предположениях следствий 1.1 и 1.2 имеем 

соответственно 

2 V<tt*» 
я?=1 

И 

5 е*(/(*)) 
ж=1 

( * , < Z ) = 1 

<c 7 ( it ,e)<7 1 "" 

Д о к а з а т е л ь с т в о . Мы докажем только первое из этих неравенств, 
второе же вытекает непосредственно. Имеем 

рШ-1 

2 vtfw)= 2 vtf (*»-• 2 е^с/ы). 
я=1 »=1 
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По предположению, 

pif{pc) = ^ ^ + . . . + 0 ! дг-f- aQ9 р X (al9..аг). 

Пусть р*—наивысшая степень р9 такая, что все коэффициенты 

делятся на р^9 но не делятся на р^\ Очевидно, Тогда для 

е„г+<—и-

^p^-1'Ci(k)^<-1-a^ 

Для l<Cfi^k следствие очевидно, так как 

2 vtf G*» 
ж = 1 

< р1**-1 < £1 р w < kl /><Ь-*>1 

7. Разложение функции в ряд Фурье 

Пусть g(x)— функция с периодом q и 

Г 1 для 0 < д с < т , 
g ( X ) ~ \ 0 для m<x<q. 

Если мы определяем g(0) = g(m)=g(q) — ~ - 1 то #(дг) может быть раз­

ложена в ряд Фурье 

где 2* означает сумму, в которой пропущен член с л = 0. Оценим 

„хвост* ряда Фурье. 
Л е м м а 1*8» Пусть 

Тогда 
| $ i < m î n ( 9 " — ^ — 

где {ос} означает (и в дальнейшем будет означать) расстояние от а до 
ближайшего целого* 
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Д о к а з а т е л ь с т в о . Имеем, очевидно, | s | ^ ç " — </. Далее, для 

9-1 

2 в( п а ) 2 е(л«) 
Î'O^Î" я = 0 

1 

l - « ( Q « ) 1 - е ( а ) < |1 -*(*)! 

I sin ira I 2 {а} 

( I s i n 7 г £ т а к как s in7r$^2^ при 0 ^ £ ^ - | - и обе части перио­

дичны и четны J. 

Л е м м а 1.9. При 0<С*<С<7 и х^т имеем 

g ( * ) - ~ ^ -±r(eq(nx)-et{-n(x-m))) 

Д о к а з а т е л ь с т в о . Пусть 

тогда, по лемме 1.8, для 0 < * < < 7 

Имеем поэтому для 0 < * < < 7 

2 = 2 ^ 
» = 0 - 4 - 1 J W=;Ç-4-l 

Аналогично для x^m, 0<Cx<üq имеем 

g' 

Получаем лемму 1.9. 

2 -~req(±n(x—m)) fx —m ^ 
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8. 

Т е о р е м а 2. Пусть f(x) = alexk~ 

Тогда 

В частности, если 1 ̂  m < J с, то 

•н-а^лг-Ьа,) и (ак>.. . ,а х ) = 1. 

< С 8 ( ^ , £ ) < 7

1 - ^ ' . (1) 

2e*№» 
Ж = 1 

(2) 

З а м е ч а н и е . Очевидно, (1) и (2) эквивалентны. Докажем только (2). 
Д о к а з а т е л ь с т в о . Очевидно, имеем 

2 2" в« <«*»*<*) < 2 , 

где ^ означает сумму, в которой пропущены члены с х=т и x=q. 

Мы можем предположить, не нарушая общности, что # 1 ^ 0 . Воспользо­
вавшись разложением gf(x) в ряд Фурье и леммой 1.9, найдем 

а=1 

2 ^ ( 2 e

qif(x)^-nx) — 2' e ?(/(x)-4-n*—тх) 
Х=1 

2 2 ""iW"1"2 2 Г*-«\ = 
« = 1 <7< 

= /j н- 4 -4-13 -+- /4 -+- /6. 
Имеем 

^= 22"^г<т2^< 4 1<> г« 
*=1 q< 

такой же результат справедлив для / 6 . 
Далее, по теореме 1, 
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» = 1 х=\ 

Пусть (atl.. .,a2,q) — q' и пусть q" означает множитель q1. Мы собираем 
члены суммы, для которых п удовлетворяет условию 

тогда, по теореме 1, 
( а * , • • •, <h. " i • + • n» q)=q", 

g'Vj n=l 
aH-n=0(modg'/) 

^ 2 2 ^J'IqW')1-**-* < 
q'f/q n=l 

öl-f-n=0(mod q'l) 
q/qtf 

< 2 y^^iяЧя1я"У-а^< 

так как, по лемме 1.2, 

Это дает 
qff/q 

i % = о / 3 = о ( ^ - ^ ) , 

ш мы получаем нашу теорему. 

2 Труды Математ. жн-та, т. XXII 

Наконец, рассмотрим сумму 

ч ч 



ГЛАВА II 

Суммирование, распространенное на функции делителей 

1. Введение 

Целью настоящей главы является доказательство следующей теоремы: 
Т е о р е м а 3. Пусть f{xx,х2,...,JCJ—многочлен k-ои степени с целыми 

коэффициентами. Предположим, что коэффициенты взаимно простые. Тогда 

р р 

где X означает максимальное значение \f(x19...9xn)\ при 1^х^Р9 

&A = m*x(Pn

9Xn/i). 
Заметим, что сг и с 2 не зависят от коэффициентов f(x19>. Далее, 

легко вывести следующее обобщение: 
П у с т ь / ( X j , — ,лги) — многочлен ^-ой степени с целыми коэффициен­

тами. Пусть m — общий наибольший делитель его коэффициентов, тогда 
р р 

2 • • • 2 * ( '• • *«>1 > < С * & l)A(loSX)^'-г) (m). 
a?i=l ##t=l 

Доказательство теоремы 3 существенно зависит от одной леммы 
van der Corput и от результатов, относящихся к тригонометрическим 
суммам из главы I. 

2. Лемма van der Corput * 

Лемма 2.1. Допустим, что существуют положительные числа А и у 
такие, что 

* Proc Akad. Wetemscb. Amsterdam, 42 (1939). 
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где X О и 

2 Х ( р , а ) < С , 
а = 1 

где С не зависит от />. При v = l , 5 = 0 предполагается, что 

Тогда 

Д о к а з а т е л ь с т в о . Полагаем у = Р1...Р2...Ртщ где Р суть 
всевозможные простые числа ^ . Л 7 . Пусть vx — наибольший делитель 
w9 не превосходящий Х(

9 гг2 — наибольший делитель ro{vl9 не превосхо­
дящий X7, и т. д. Предположим, что имеем окончательно 

причем п мы будем называть индексом целого числа у9 a vl9*..9vn— 
характеристическими множителями числа у. 

1 

Очевидно, vn__x^X . Таким образом, 

и 

Так как d(kp.)^d(l) d(\i)9 то 

Очевидно, имеем 

2 Г , если л = 0, 
1 I -

2Tmax<i""(«0<2T 2 rf,"(«0» е с л и п > 0 . 

Пишем 

у = 1 0 ^ я ^ 1 4 - 2 / г 
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где Un означает часть этой суммы, распространенную по целым числам 
с индексом п. 

При л = 0 имеем 

£ / 0 < 2 т У , Г ( # ) < 2 Т А 
У—1 

2 
При l < n < l + Y имеем 

где 

У=1 
X 

и ^ означает сумму, распространенную на целые числа ^ индекса 

n, a ^ v — v-й характеристический множитель числа у. Так как 2 ^ Ü V ^ 

< Z T , то 
х 

ит< 2 ̂ » 2" Т&> 
где 2^ означает сумму, распространенную на целые числа с индексом 

л, имеющие v своим v-м характеристическим множителем. Поэтому 

У=1 у=1 а=1 
Ч;У 

Так как cf(v) = (a 1 -+-l)(a 2 -f-1) (а 9 -ь1) , то 

ц»<*2 Д -̂1)г^^^< 

< А г * < ^ 3 А е * 1 * * < с' 3 Л (log- Х)с 

V 1 
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(Здесь мы пользуемся тем фактом, что 

являющимся следствием теоремы о распределении простых чисел. Конечно, 
он является также следствием леммы 7.14). 

3. Леммы о числе решений сравнений 

Лемма 2.2. Пусть f(xl9...9xn)— многочлен k-ой степени с целыми 
коэффициентами. Предположим, что не все коэффициенты делятся на р. 
Тогда число решений сравнения 

f(x19...,хп) = О (modра) 
будет < с4 (k, п)рп*~~1. 

Д о к а з а т е л ь с т в о . 1) При я = 1 лемма тривиальна, так как срав­
нение 

f(x) = 0(modp) 

имеет самое большее k решений. 
2) Напишем f(x19.. .9хп) = О (mod ра) в форме 

Л (*i t • • • I x n - i ) х п - • • /о ( * 1 1 • • • , хп-г) = 0 (mod р*). 

Желая доказать лемму методом полной индукции и предполагая 
ее справедливой для п — 1, мы можем сказать, что существует О (р(*~1) 
систем целых чисел х19*..9 хп_}, удовлетворяющих сравнению 

Л ( * i » • • • > xn~-i) = 0 (mod ра). 

Для тех f3 (хг,..., х м_ 3), которые О (mod /? a) f имеем самое большее 
0(р*~~г) значений хп. Таким образом, число решений рассматриваемого 
сравнения будет < С с 4 ( & , п)рпа~~г. 

Лемма 2.3. При предположениях леммы 2.2 число решений сравнения 

f(xl9 ...9хп) = 0 (mod рЛ) 

будет ^с5(к,п)((Х^1)п^рпЛ-Л\ где a = l/jfe. 
Д о к а з а т е л ь с т в о . 1) При п = 1 число решений сравнения 

/(jt) = 0 ( m o d / ) 
равно 

п~1 ж—1 

Пусть 
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Если р\ ( а к 9 . . т о , по предположению, рХа0. Сравнение не имеет 
решений, поэтому можем предположить, что рХ(ак9.. -»aj. По лемме 1.1, 

£2 JBv<Ä/<*>> 
Ä = l X=l 

<£2 
h=l 

2 

2?2 2v(*/«)=o 2?-^-'1-" 
X=0 A = l x=l X=0 

так как 
= 0(p*fl-«)), 

a 

2rM 1" f l ) = 0 ( l ) . 

2) Индукция. Мы переписываем сравнение 

f(x19.. . , x j = 0 ( m o d / ) 
в виде 

Теперь мы рассмотрим те системы xly.. .,хп__1у для которых либо 

/10?*, • • • , & ) , о с > 1 > 0 , (1) 

либо р* I . В последнем случае мы имеем 

r\(i . . 2 (w-~l)a—aa a\ r\(t . ч \«—2 Mot—a<*\ 

решений. Предположим теперь, что условие (1) выполнено. Так как 
по меньшей мере в одном из многочленов g, например g^9 не все коэффи­
циенты = 0(raod/?), то, по предположению индукции, сравнение 

^ = 0(mod/>x), 0 < x v < P a > l < v < 7 2 — 1 

имеет самое большее 

0 ( ( a + l ) w " % ( w - 1 ) ( a - X ) - , - ( n " - 1 ) ^ X ö ) = 0 ( ( a -ь xj-y )̂«-*«) 
решений, т. е. число систем х19.. . , хп_19 удовлетворяющих условию (1), 
будет 0 ( ( a - b l ) n " " 2 y D ( n ~ " 1 ) a ~ X a ) . Для каждой системы х19.. . , J t r n - i , удовле­
творяющей условию (1), сравнение 

^ ^ - b . . . - . - ^ ^ 0 ( m o d / n 0 О в < / 
Р Р 

дает самое большее 0 ( р Х 4 " ( а ~ Х ) ( 1 " " а ) ) = 0 ( / 7 а ~ " ( а " " Х ) а ) значений xw. 
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4. Доказательство теоремы 

В лемме 2.1 мы полагаем, что Т(у) есть число решений для 

| / ( * 1 , - . - , * „ ) 1 = У, K * v < ^ . 
Тогда 

р р z 

2 • • • 2 d % < I ̂  » • • • • I ) = 2
 é (s) т (s), 

.дe X— наибольшее значение | / (хг,..., х н) | при 1 ̂  х ^ Р. 
Полагаем у = а и 

I 0((а-
Тогда 

2 ш = 2 - - - 2 1 = р и = л 

2^х(^-н1)ял/, 
У=1 
р*/У 

где Л/—число решений сравнения 

f(x19 •.., хп) == 0 (mod р а). 

По леммам 2.2 и 2.3, имеем 

Поэтому число решений сравнения, рассматриваемого в лемме, при 
условии (1) будет 

О «ОС Н- jpy«- ! )« -^ . р * - < « - Х ) а ) = 0 ( ( а ^ г)п^рпа-а.у 

Это, очевидно, справедливо и при 1 = 0. Таким образом, число решений 
сравнения, рассматриваемого в лемме, будет 

0 ( 2 ( о с 1 ) П " 2 j = О ((ос - ь If""1 / а " а а ) . 
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Так как 

2 («+i)Mw«)=o ( 2 (—ir2i)î 

-2 (* l ) = о d), 

то мы получаем нашу теорему. 

5-

Для дальнейшего мы докажем два более точных результата, отно­
сящихся к функциям делителей. 

Л е м м а 2.4. Пусть t целое; тогда 

Д о к а з а т е л ь с т в о . Результат очевиден при t=0. Мы предположим** 
что он справедлив для t—1. Тогда имеем 

2 { D ( Z ) ) I = УМУ-1 2 1 = У 2 { а Ш ~ г = 
<ж^Р 0<я<Р у в 0<Х^Р ОО^Р 

= 2 ^ 2 ^ < ^ с - 1 ) ( ь ^ " -
Л е м м а 2.5. Пусть t целое; тогда 

2 (diztf^ctöPQogff-1. 
0<я̂ Р 

Д о к а з а т е л ь с т в о . По лемме 2.4, имеем 

2 (*<*)У< 2 (<w-x21 = 

0<г^Р 0<^Р Х/я 

= 2 2 (^г-
0<О̂ Р 0<z^P 

= 2 ^ ) ) w 2 («w-1-
0<Л Р̂ 0<fî P/x 

\о<х^р / 

= 0(P(logP)2'-1)-



Г Л А В А III 

Теоремы о среднем значении некоторых тригонометрических 
сумм (I) 

1. 

Т е о р е м а 4. Пусть f(x) — многочлен с целыми значениями к-о& 
степени и 

У (а) =2 е™т*-
Тогда, при ls£^v<^&, 

] I 7(a)Г J a < C l ( / : , v ) P 2 ^ QogPf^J^iu), 
О 

где и — общий наибольший делитель числителей f(x)9 а с (k, v) означает, что 
с зависит только от к и от v — коэффициентов многочлена f(x). 

З а м е ч а н и е . В силу выпуклости функции 

можем получить неравенство с любым вещественным положительным 
числом "к вместо 2V. Более точно, при 2 V < > ^ 2 V " + " 1 пользуемся неравен­
ством 

Мы не приводим доказательства этого неравенства, так как получаемый 
из него результат не будет употребляться в дальнейшем. 

2. Леммы, относящиеся к неравенствам 

Л е м м а 3.1. Если a-bß = l, a ^ O , ß > 0 , то 
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Д о к а з а т е л ь с т в о . При х > 1 , 0 < т < 1 имеем 

xm — l=m J y^dy^m^ dy=m(x — ï). 
î î 

Полагая лг=~- ( s > f ) , т = сс и 1 — m = ß, мы получаем нашу лемму. 

Л е м м а 3.2. Если oc~f-ß = l, <х>0, ß > 0 , то при вещественных 
ан и 6М (1 ^ п ̂  г) имеем 

2 - А < 2 к г s * 
#»=1 » = 1 k н = 1 

{На эту лемму мы будем ссылаться как на неравенство Hôlder'a, а на частный 

случай леммы при a==ß==-|- мы будем ссылаться как на неравенство 

Cauchy.) 
Д о к а з а т е л ь с т в о . По лемме 3.1, 

2 
и=1 

2 K I " Ы\ь/ 2 
I i \ 

< 
г 

2 = а - ь в = 1. 

- I 2 i " . i e 2 i & » ! ß / 

Л е м м а 3.3. Пусть 
р 

A Q ( * ) = V < Q ( * + s r ) - Q W ) , / = 2 e ^ w ) 

2/ 9 IS 
p 

и пусть 2 означает* суммирование по переменному х, пробегающему 

<^ с2 (k) Р значений. Тогда 
р р р 

и г Ч с з ^ ) ^ - 1 2 - • -2 2 î •••д/(^о) 
для [л — 1 , 2 , . . . , & . 

У1 У[Л 

* Это обозначение будет сохранено всюду в дальнейшем. 
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Д о к а з а т е л ь с т в о . Имеем 

р р 

m 2 = 2 2 е ^ ~ ^ ) = 

Р Р 

= 2 2 -/<*)) = 
Vi 

Р Р 

= 2 2 е ^ л ^ > 
Vi ъ 

Следовательно, лемма справедлива для — 1. 
Допустим, что лемма справедлива для jx — 1. Тогда, в силу неравен­

ства Cauchy, 

| / Г - ( | / | * Т < 
р р р 

2 " - 2 2 е ^ " - ^ - 1 л - - л / а д 

р р 

< 

Hl S|i— I "ji 

р р р 

< р 2 - , - х 2 . . . 2 2 * (л - • • ̂  А • • •д /с W) 
Л е м м а 3.4. Если Q (л:) — многочлен &-ой степени со старшим коэф­

фициентом а, то A Q (х) — многочлен от х (к — 1)-ой степени со старшим 
у 

коэффициентом ка. Следовательно, 

Л . . . &Q(x)=zk\cx,x-+-B, 
У\ Ук—1 

Д . . . Д <2(лг) = £!ос. 
Vi Ч 

Доказательство леммы очевидно. 

3. Доказательство теоремы 

Мы можем предположить, не нарушая общности, что f(x) — многочлен 
с целыми коэффициентами. Действительно, пусть g — общий наименьший 
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знаменатель коэффициентов/(лг); тогда, по неравенству Hölder'a (лемма 3.2), 
имеем 

, га 
2 2 <<нч*+ы 
i=l х=1 

га 

J|r(«)frfa=J 

t=i о 

У . e(J{qx+t)-f(t))* dec, 

где f(qx-+-t)—/(£)— многочлен с целыми коэффициентами. 
Теорема очевидна при v = l. Из леммы 3 3 выводим 

р р 

# 1 

где * означает условие 

.у ^А...Д/(лг + 1)=^=0. 

В самом деле, из у х . . . у„ А . . . А/ (дг„-м) = 0 следует либо y v = 0 для 

определенного v, либо А . . . А / ( х ч _ 1 )==0. Отсюда получается оценка (1)* 
S/fju Pi 

так как старший коэффициент многочлена А . . . Д/(дг + 1 ) не равен нулю-

Умножая (1) на | Г(а)|2^ и интегрируя по ос в пределах от 0 до 1» 
получаем 

1 1 

I T(öi)f*1 а*<4Р^~1 J \T(oi)fdoL-

1 Р Р Р 

. ^ - , - 1 j 2 • • • 2 2*е& • • • ^ А • • • A/(*F«) a)i 7>)i 2' l<fc-
О Vi 

(2) 

По предположению индукции, первый член правой части (2) равен 

О (Р* ( 1 о о ; ю ( r f = 

Второй член правой части (2) равен 

р р р 
^-"-12- - -22*2- - -2*(<*-^-^>> 

О # 1 

— ptf—v—1 



Теоремы о среднем значении (I) 29 

(3) 

З х . . . у Д . . . Ь/(Х = + . - . - + - / ( z 2 t * - i ) — / ( ^ - . + 1 ) — . . . — 
% Vi 

— /СО» # 1 • • • • • A / ( ^ H - I ) = ^ ° . z v , ^ , ж + 1 < ^ P. 
* Vy. Vi 

При данных г х , . . . , число решений системы (3) будет 

< сР(f(zj-+-... -H/(Z^-0 — — . . . — {Ы). 

По теореме (3), имеем 

R < 2 • • * 2**><^)-н- • • • -fM)< 

где ** означает условие /(^i)-i- • • • — / ( ^ ) = ^ = 0 . Теорема таким образом 
доказана. 

4L Лемма WeyPn 

Л е м м а 3.5. Пусть < / > 0 , 

h | < - L , (h,q) = l ос — 
я 

Тогда 
Û < 6 t / 4 - ^ l o g f 9-

A Ô 

Д о к а з а т е л ь с т в о . Мы пишем ос = — — 1 ~ ^ " » l ö l ^ L Пусть х=хг -+-/; 

тогда 1 ̂  <^ q. Напишем ос/ в виде 

а у г _ А _ н — ^ |6'|<С1, 6 — целое. 

Так как Xi^q, то имеем 

где р означает наименьший абсолютный вычет числа кхг - ь Ь по модулю с. 

Так как (A, q) = l, то, когда дгх пробегает полную систему вычетов 

по модулю q9 р пробегает значения 0, 1 , . . . , q~J? причем каждое 

из них является значением р не более чем дважды. 

где R — число решений системы 
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Мы заменяем члены Û с р ^ 2 через U* Остальные члены могут 
быть переписаны в виде 

p = 2-4-s, 0 < s < - y < 7 — 2 . 

Имеем 
г р-н 26» \ s 

I Я ) ^ Я 
Следовательно, 

1 < 6 £ / - ь 2 2 ^ - < 6 f / - f - ? l o g < 7 -

Лемма 3.6 (Weyl). Если осА, . . . , а 0 вещественны и 

/(дг) == аАлг* ч- . . • ннах л:-+- а 0, 
А
 1<~Г> (А, д) = 1, ос* — • 

? 2 

ТО 

*=1 

Д о к а з а т е л ь с т в о . В силу лемм 3.3 и 3.4, имеем 

^1 * * 1 / 1 

< ^ - 1 - * 2 - 2 2 е ( ^ ! л - - - ^ 1 л г * а * ) 

^ р ^ , - + - р ^ 2 ••*2* 
У1 

где * означает условие, что ух . . . j w 0. Так как, по лемме 1.2, число 
решений системы 

будет < ( J ( r ) ) i " 1 = 0(P E ) , то 

| 5 Г 4 P 

По лемме 1.8, имеем 

^ 2 2 e ^ 

2 е ( Г . ш * ) < ^ т т ( Р , j î ^ - } ) » 
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и, по лемме 3.5, 

Г \ F=/-f-l / 

Следовательно, 



ГЛАВА IV 

Теоремы о среднем значения некоторых тригонометрических 
сумм (II) 

1 . 

Т е о р е м а 5 (теорема Вк). Пусть Р целое положительное и 

С* = 2 е ( а ^ * - н . . . ч - а 1 л г ) . 

Тогда 

J — J I Q | x r f x 1 . . . r f a Ä < c 1 ( ^ s ) P 
л--*(*-М)+в 

где Х = л(&) определяется следующей таблицей: 

к 2 3 4 5 6 7 8 9 10 

1 6 16 46 124 312 760 1778 4068 9190 

Более того (теорема B2

f), при к = 2 имеем более точный результат: 

ж = 1 

rfa1Acï<i1P
e(losr^ 

Доказательство теоремы зависит от следующей теоремы. 
Т е о р е м а б (теорема и4й). Пусть 

f(x) = a0xk4-a1x^''1-^ 

где а 0 — положительное целое число ^ 6 2 ( & ) и аг — целое, не превос­
ходящее по абсолютному значению Ь3(к)Р. Пусть 

р 

« = . 1 
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Тогда имеем 

f . . . J \S£d4 • - - *)P 

где л = л(£) определяется следующей таблицей: 

к 3 4 5 6 7 8 9 10 

1 10 32 86 220 536 1272 2930 6628 

Доказательства обеих теорем зависят друг от друга; именно, мы 
докажем справедливость теоремы Ак при помощи Ац и Bi% для 1г^к— 1 
и I2^.k— 1, и справедливость теоремы Вк при помощи Aix и Bi2 для 
Ix^k и / 2 <^& — 1. Применяемые методы различны для различных 
Конечно, существует единообразный метод, при котором мы можем прп* 
менить индукцию, но такой метод дает более слабые результаты. Поэтому 
нам приходится удовлетвориться таким сложным и не единообразным 
методом. 

2. Замечание о теореме Ак (т. е. о теореме б) 

Мы можем предположить, что f(x) = x* в А (к). Действительно, 
интеграл 

J " • • J IS^do^... d*k 

равен числу решений системы диофантовых уравнений: 

х ь + . . . + х / = ^ + . . . 1 < А < £ - 2 , 

0 < * ; < Р , о < л < л 
Умножая эти уравнения соответственно на а*~~~1 кк

9 a0

h kh (l^h^k—2), 
получим 

9=1 ¥ = 1 

2 K W = 2 < а « ^ ) А ' 1 < * < * - 2 . 
» = i ' » = 1 

3 Труды Мате мат. ин-та, т. X X I I 
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Полагая х/ = а0for,-+-аг и уч'= а0ку^-+-аи получаем систему урав-

Х1>*-+-...-*-х/=у1*+...ч-у;\ 

+ * ' * = у / - + - . . . 1 < А < £ - 2 (1) 

с условиями 

Поэтому 

k \ ( x : - a i ) , k\(y:-ai). 

1 ааЪР-*-а1 

О 0 
1 1 *=—1 

О О «=аа 

1 1 а,»Р+в, 

О 0 ж=0 

1 1 § 

О О ге=у 

2{t 

так как CL0<^.1 И az<^P. Следовательно, мы должны рассмотреть только 
случай, когда f(x) = x*. 

3. 

Нашей целью теперь является доказать, что 

о о 

1 1 

где £ = 1 о # Р . 
Л е м м а 4.1. Пусть 

* Для а х > — 1 первая пустая сумма означает 0, а для a0kP-*-aj < 0 вторая 
пустая сумма означает 0. 
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3* 

Симметрическая функция 

может быть выражена как функция от sl9 . . . , Sj__2 я но не от s M . 
Д о к а з а т е л ь с т в о . Имеем 

где <т4. означает z-ю элементарную симметрическую функцию от х19 . . . , хк. 
Воспользовавшись одной известной теоремой о симметрических функциях, 
найдем 

/ = ( - I)*"1 5 , Ч- ( - 1)* * 4 - Ь / , ( S l , . . . , S t _ 2 ) . (1) 

По формуле Ньютона о симметрических функциях, именно 

(— 1 ) * ^ = — Sb + ^st-i-i-i— l)*ffMSi-+-/2(si, s M ) 
и 

имеем, следовательно, 
^ ( ( - l f < T I - H ( - l ) i - 1 ^ _ l 5 l ) = 

= — * * - * - / * («1» • • • » S*-ü)- (2) 

Из равенств (1) и (2) мы получаем нашу лемму. 
i—1 *—1 

Л е м м а 4.2. Пусть &]>3 . Пусть sv = ^ V и 5 - / = 2 ^ с л и 

(i=i 1^=1 

* и > 0 , У ( 1 > 0 и 
^ —— 5̂  , Sv —— Sy , 1 V Je ~~~ 2, 

тогда ряд чисел х19 . . . , хА_ х является перестановкой ряда чисел 

Д о к а з а т е л ь с т в о . Пусть <?v и сг/— соответственно v-ые элементар­
ные симметрические функции от х19 . •. 9 xkj.2 й от у19 . . . , д^ц. Тогда, 
по формуле Ньютона, имеем 

Sk — <?! S M -4- . . - -Ь (— l)*" 1 <J W Si = О 
И 

s w — ̂  s*_2 . . . -t- (— l ) * " 1 (А— 1)-<гм = 0. 

Аналогичные равенства имеют место для у19 . Так как 
sÄ = s/, sy = sv

r и < \ = < Д л я 1 < V < £ — 2, то 

*i - О ^ (- D""1* - Ci)= 0 

^ i - C i ^ ( - i ) ^ 1 ( ^ - i ) ( ^ 1 - C i ) = o . 
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Следовательно, 
Ы* - 1 ) - О (**-! - О = о . 

Так как G1(k — l) — s1 = (k—2)s1^0f то 

Таким образом, ряд чисел х1% . . . , хк_г является перестановкой ряда 
чисел у19 . . . , 

Лемма 4.3. 

1 1 

о о 

Д о к а з а т е л ь с т в о . Пусть / = л г 1 ч — Т о г д а , по лемме 4.1, 
из системы уравнений 

xf-î | - * / = У 1 * н н у / , 

*i =9i 

следует, что 

(3) 

(/_ ^) . .. (/_ Хк) = (1-уг) . . . (1-ук)9 

так как д^н *-xl=yl-~i t-yfc. 
Для данных с условием 

( / - У 1 ) . . . ( / - Л ) ^ 0 (4) 
имеется самое большее 

систем целых чисел х19 хъ. Таким образом, число решений системы 
{3) с условием (4) будет, по лемме 2.5 

р р 

<2 2 ^ 1 (1 ( / -л ) . . ( / -л )1 )= 
№ У* 

р р 

<^Р*£*(2*~«--1)в 

Далее, если условие (4) не выполнено, то из 
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мы выводим, что, по меньшей мере, одно из чисел х равно одному из 
чисел у, например хк—ук. Тогда, по лемме 4.2, из (3) следует, что 
ряд чисел х 1 9 х к щ _ г является перестановкой ряда чисел у19.-.9 Уъ-\. 
Число решений будет < ^ Р \ Таким образом, мы получаем нашу лемму. 

Л е м м а 4.4. Система уравнений 

* î + - - b ^ « = ^ - + - - + l ^ i , 1 < Л < * (5) 

влечет за собой соотношение вида 

fa S i ) ' - ( Х к У к) = Sk+l) S {У if • • • » Ук> Хк> Ум > х м ) , 

где g— однородный многочлен (к—1)-й степени указанных переменных; 
однородный многочлен от хк+г, ук+19 содержащийся в g, не делится на 
хь+1 — Ук+19 и коэффициент при х%~\ в g есть постоянное =т^0. 

к—1 *—1 

Д о к а з а т е л ь с т в о . Пусть sv = xj и *v = у/. 

Тогда (5) эквивалентно 

*л = h - (4 - У\) - - *Li). К А < ^ (6) 

Хорошо известно, что 

sk — *г sk^ н - <т2 s Ä _ 2 -I ь (— I ) 1 - 1 < r w 5 l = 0, (7) 

где ^ i = ^ ( x 1 , . . . , есть z-ая элементарная симметрическая функция 
от л г л _ 1 в Известно также, что ^ i , . . . , <Уа_х могут быть выражены 
в виде многочленов от s19...9 s f c_ i e Более точно, мы имеем тождество: 

s k — s i S ( Д » 5 * ~ 2

 н «~(— l)*" 1 (si> • • • f s k - i ) = °- (8) 

Аналогично, имеем 

'l ' . - ! - » - « * (Д. <0 4-2"*- I)*" 1 -̂0 = 0. (9) 

Пусть Г ( y 1 9 . . . , yk, xk9 ykJhl, xk_^ — многочлен, полученный при под­
становке (6) в левую часть (8). Установим теперь формулу 

Т(у19...,Ук9хк, хк+1, хк+г) «= X (хк — у J . . . (x f c — Л ) . 

В самом деле, Т(у19...9 ук9 хк9 хк_^19 хк+1) есть многочлен £-ой степени 
от хк и он обращается в нуль, если положить хк—уу ( l<^v<^&). 

Следовательно, 

Т(у19...9 ук, хк9 д г ^ ) — 4 х * — & ) • • • ( * » — Л ) 
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исчезает при х к + 1 ~ д к + 1 . Поэтому 

• • • f Уъ* Уь+if xk*-i) " 

=^(хк—Ух) ~*(хк—У*) + (хк+1 — Ук+1)2(У1> -->Ук> х*> Укл-и 

Наконец, однородный многочлен относительно хк^г и yk+v £-ой сте­
пени, содержащийся в первом члене (8), после подстановки из (6) делится 
н а x k + i — н о н е Длится на (хк+1— Уъ+i)2. Таким образом, мы 
получаем нашу лемму. 

Лемма 4.5. 

f . . . ] \Ск\ЧМ) dx1...dxl^b5(k)Pk+1 L*-x-
О о 

Д о к а з а т е л ь с т в о . Очевидно, левая часть неравенства в лемме 
равна числу решений системы 

*Ч-1 к+1 

2**=2^*' 1<н<к> г<х> v<p- (10> 
^=1 v=l 

По лемме 4.3, имеем 

(** — Уг)• • • (хк — Ук) = (хк+г — Ук+i)е(У1>--->Ук>хк> хм)' ( И ) 

Если (хк—уг)... (хк—ук) = 0, то является перестановкой 
чисел и уравнение имеет 0(Р решений. 

Пусть п = целое т^О и п = Х 1 . . . \ = = | л . 1 р . 2 . Рассмотрим теперь число 
решений системы 

Хк-У, = \ ( l < v < Ä ) , (12) 

xk+i— Ум=^1 (13) 
и 

^ ( ^ . • • • 1 •***&+i»**+0 = t l ' Ä - ( 1 4 ) 

Для данных X l f " к к 9 fa9 fa и хк неизвестные Ух,...,ук однозначно 
определяются уравнениями (12). Далее, в силу свойств g9 по уравнениям 
(13) и (14) определяется самое большое к системы неизвестных 
ХА-Ы> Ук-h-l-

Но при данном п число систем fa, fa будет <^d*(n). При 
данных \ f faf fa и число решений системы (10) будет 0(1) . 
Следовательно, число решений (10) будет 
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4. 

Л е м м а 4.6. Пусть &(лг) — многочлен от л: с целыми коэффициен­
тами и 

g(x) = g l (х) аг н н & (х) сс8 

— многочлен степени к. Пусть 
р 

Тогда, полагая ДН' = Д . . . Д , имеем 

2 - 2J£Mb...ef*tM> 
Vi V\L «JJL+l 

для [x = l, 2 , . . . , & — 1, где * означает условие, что либо 

тождественно, либо 

Д о к а з а т е л ь с т в о . Лемма следует из леммы 3.3, так как если 
Si • "У\>,^SiС^О н е равно тождественно нулю, то число решений уравнения 

yi.--^A|tft(*i*+i) = 0 
*5удет <^.Р^. 

5. Доказательство теоремы 

В2 и В2

! являются непосредственными следствиями леммы 4.5. 
Д о к а з а т е л ь с т в о Az. По лемме 4.6, имеем 

р р р 

У1 V2 *з 

Умножая это неравенство на | 5 3 | 6 и интегрируя по осх и ос3 от О до 1, 
имеем 

i l i l 

[ J | 5 3 [ 1 0 d^doL^P* J f I S a p A ^ A c e H - P ^ ( 1 ) 
0 0 0 0 

где R—число решений системы 

9i У г А * * з 3 = Zi z% *з3 — ^ 3 — * 5 3 — * 6 3 > 
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По лемме 1.2, имеем 

р р 

По лемме 4.3 и (1), имеем 

1 1 

JJ ^ Г Л х Л , ^ / ^ . (2) 
о о 

Д о к а з а т е л ь с т в о i? 3 . По лемме 4.6, 

р р р 

| С 3 | * ^ / » - 1 - Р У 2 2 е ( л ^ А 2 Ц 3 « 3 - ь ^ з 2 а 2 ) ) . (3> 
# 1 .Уа хз 

Умножая это неравенство на | С 3 | 8 и интегрируя по осх, а 2 , а 3 от 0 до 1* 
мы получим, на основании леммы 4.5, 

I i i 

J f J IC.P- < Ч Же,rfoc 3< P 7 + e - + - P R , 
0 0 0 

где /? — число решений системы 

9iy**° = Zi*~* V > 

2yiy 2 = z 1

2 -4 z 8

2 , 

0 = * а н z 8 , zv^Pf 

причем w = A 2 j t 3

3 < ^ R 
По лемме 4.3, для фиксированного w число решений системы 

2z* — wz1

2 + . . - — (2z8* — wz8

2) = 0, 

Z l . . . — 2 8 = 0 

будет < ^ P 5 + S . Так как при фиксированных . . . , 2 8 число значений 
Si и # 2 будет ^ c f ^ H h - . z 8

2) = 0(Ps), то имеем 

и» 
Таким образом, 

I i i 

\ \ \ \ С Г а ^ а ^ Р ^ \ ( 4 ) 
О О О 
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Умножая (3) на | С 3 | 1 2 и интегрируя, найдем по (2) и (4), 

I i i 

О О О 

Д о к а з а т е л ь с т в о Л 4 . По лемме 4.6, 

р р р р 

# 1 Ка Уз « 4 

Умножая это неравенство на \S±\B и интегрируя, получаем по лемме 4.3: 

I i i 

J J J | S 4 | 1 6 da2 doc, <t P 1 1 + e ч - P 4 P, 
О О О 

где /? — число решений системы 

Ui U 2 УзА 3 **4 = z-i н V » 

0 = 2̂ 2Н Z 8

2, 

0 = ^ H- 2 g , Z<^P. 

Согласно теореме B2, число систем значений zl9 • • • , z 8 , удовлетво­
ряющих последним двум уравнениям, будет ^Р8""3"1"6, и, для фиксирован­
ных ^ , . . . , z8 число систем значений у1У у2,уг, лг4 будет ^ dB ( Z ^ - Î z%)= 
= О (Р е). Следовательно, Р < ^ Р -з+б_ро+е^ Таким образом, 

J J J | S 4 | M < f c 1 Ä c . « f e 4 ^ P U + \ (5) 

О О О 

Повторяя тот же процесс, получаем 

I i i 

W l l S ^ d ^ d ^ P ^ (6) О О О 

1 1 1 

Ш | й Г <**i <*Ч dxé P Î 5 + \ (7) 

О О О 

Д о к а з а т е л ь с т в о Б 4 . По лемме 4.5, очевидно, имеем 

1 1 1 1 

J I f J \С4\10d^doi^da^P^. 
o o o o 



42 Глава IV 

По лемме 4.6, 
p p р 

2/2 * 3 

Умножая это неравенство на | С 4 | 8 и интегрируя, получаем 

1 1 1 1 

J J J j* IC4114 d^ da2 Joc3 </a4 <^ P 8 + e - ь PP, 
0 0 0 0 

где R — число решений системы 

? 1 й А 2 ^ = ^ н 4 » 

^ 1 У 2 Л 2 ^ = ^ 1 - 1 4о> 

2 Л Л = ^Н 4 ъ 

0 = Z j H я™-

Полагаем A 2 x 3

3 = 2w (легко видеть, что то является линейной формой 
о т ih> У г и хз с целыми коэффициентами). Для фиксированного о> число 
решений системы 

0 = — WZ? н (* 1 0

3 — ^ 1 0 ) , 

0 = Zj н z 1 0 

будет <^Ре"*"в, на основании ( 2 ) . Следовательно, / ? < ^ Р 7 + £ . Таким 
образом, 

1 1 1 1 

Jf f JlQ ГЛсх <fc2 </a3 ^ P***. (8) 
0 0 0 0 

По лемме 4.6, имеем 

p p p p 

icj 8 ^P 7 -HP 4 2222* e ^^^ Ä 3 ( ^ a *- | -^ 3 a 3 -*-^ 2 c t 2 4 -^ a i>)- <9> 
Ух У* Уз Щ 

Умножая это неравенство на | С 4 | 1 4 и интегрируя, найдем 

1 1 1 1 

IfJjlQ Г cfei d(x2 doi3 J a 4 < Р 1 б + е ч - P 4 P, 
0 0 0 0 

где R — число решений системы 

6у1У2Уз®> = 4-1 4 i , 

6У1Угдг = 4-* Ai, 

0=4-*- ——At, 

0 = 2 ^ 4 Z l t , 

1* 
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причем w = -g-А3дг4

4 есть линейная форма от у19 у%9 уг и хА с целыми 
коэффициентами. Легко видеть, что для фиксированного то R не пре­
восходит числа решений системы 

2* — wz\-\ ( z ^ — W2?iù — ®> 

^ ^ ^ 0 , 

Z l 4 % 4 = 0 , 

"взятого <^P 1 _ h e раз. 
По лемме 4.3, имеем 

Я<^Рг+'Ри^^Рп+' 

J f f f | Q | 2 2 r f a 1 . . . r f a 4 ^ P 1 5 + - . (10) 
0 0 0 0 

Применяя те же рассуждения с (8) и (9) вместо леммы 4.3, найдем 
последовательно 

Ш! I Q P * * ^ < / > 1 5 + л + ^ ^ = i . 2 , з . ( п ) 

0 0 0 0 
В дальнейшем мы вводим сокращенную запись 

\fdx 

ДЛЯ 
1 1 1 

0 0 1 

Д о к а з а т е л ь с т в о As. По лемме 4.6, 

p p р 

1 s51* ̂  р з - ь р 2 ̂  2 е
 < ^ л д 2 ? 

У1 #2 * 3 

где g" (х 3 ) = х3

5 oi5 ч - лг3

3 ос3 ч - х 3

2 ос2 ч - х 3 . Умножая это неравенство на 
| iS 5 | 1 0 и интегрируя, получаем 

где i? — число решений системы* 

* Здесь и в дальнейшем мы не будем повторять определения zu. 
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Л Л А 2 4 = ^ н 4 ) , 

^Si3iw = ^ 4 ) , 

ЬгУ2=4ч 4 и 

0 = ^ i ^ 2 1 0 . 

Для фиксированного w число решений системы 

4 — ( z\Q — wz2

l0) = 0, 

z i 4 z10 = Q, 

по Л 3 , будет < ^ Р 6 + Е . Следовательно, R <^ р 7 + е . Таким образом, 

J | S s | 1 4 < f e < P 8 + \ 
По лемме 4.6, 

» I » J # 3 « 4 

Умножая это неравенство на l ^ l 1 4 и интегрируя, получаем 

J | S 5 | 2 2 c f a < ^ P l S + e - i - P 4 # , 

где Р — число решений системы 

ffiU2ff3^4 = 4 - 1 4 и 

^ЗхУ*9* — ^ 4 , 

0 = 2 а H Z l t . 

Таким образом, по 5 2 , P <^ Р1*-3"*"'- Следовательно, 

J | . S 5 r < / a < ^ P 1 5 + \ 
По лемме 4.6, 

#1 #2 Уз ft «Tg 

Умножая это неравенство на \S5\22 и интегрируя, получаем по 

Повторяя этот процесс, получаем 
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Д о к а з а т е л ь с т в о В5. По лемме 4.6, имеем 

I с5 F> - ь p* 2 2 2 2*е
 л * л з * 

У1 ïfe Уз «ч 

Умножая это неравенство на | С б | 1 2 и интегрируя, получаем, по лемме 4.5 

J I С5 Г с/а < P 1 3 4" 6 -+- P* P, (15) 

где R — число решений системы 
Л & Л * 8 * ^ * ? - " 4г, 

6g1y2g<iv)=z*-* 4 J , 

% 1 ^ 2 ^ 3 = 4 - В 

0 = 2 Г 2 Н Z 2 

0 = ^ 4 z 1 2 . 

По лемме 4.5, имеем 

j\C5\wdy.<^Pw+\ (16) 

Повторяя этот процесс, но используя (5), (6) и (7) вместо леммы 4.5, 
получим 

| | С / 0 + 8 Х Ж с < ^ Р 1 3 + 7 Х + ' , л = 1, 2 , 3 . (17) 

Применяя лемму 4.6 с [/. = 4 и (10), (11), (12) и (13), получим 

| |С 5 Г + т
 с / а ^ Р ™ 4 " , 1 = 1, 2, 3, 4, 5. (18) 

Д о к а з а т е л ь с т в о Л 6 . Применяя лемму 4.6 с jx = 3 и лемму 4«3> 
получим 

J|J>6r+8X</a<^P13+\ 

Повторяя этот процесс и применяя (5), (6) и (7) вместо леммы 4.3, 
получим: 

J IS,! 1*** <fc<^Р 6 + 7 Х + % л = 1, 2, 3, 4. (19) 

Применяя лемму 4.6 с f/. = 4 и Bs, получим 

J | S e f J a ^ P 4 9 - ' . (20) 



Гхааа IV 

Применяя лемму 4.6 с (̂  = 5 и 5 4 , получим 

J \ S 6 f 0 + m doc < л = 1 , 2, 3, 4, 5. (21) 

Д о к а з а т е л ь с т в о # 6 . Аналогично доказательству AQ, имеем 

J"|C 6 | 1 6 doL<^PQ+z (тривиальное следствие леммы 4.5), 

J"I С 6 | 1 в + 8 Х dec < Р 9 + 7 Х + 8 , л = 1, 2 ,3 , (22) 

JI Се | 4 0 + ш Joe < р 3 0 + 1 5 Х + « , X = 1, 2, 3, 4, 5, (23) 

J j C g rfa ^ р ю 5 - ь з 1 ^ f А = 1, 2, 3, 4, 5, fi. (24) 

Д о к а з а т е л ь с т в о Л 7 . Имеем 

j ! ^ 7 / 1 6 d0L<£P9+\ 

j " | S 7 | 1 6 + s x < f c ^ P 9 + 7 X + e , л = 1 , 2 , 3 , (25) 

J |S 7 | 4 0 + 1 6 X cfa ^ p*»™*; л = 1, 2, 3, 4, 5, (26) 

Jl̂ r <&</>Ш+\ (27) 
J |5 7 Г + 6 4 Х

 < f o < ^ P 1 3 c + 6 3 X + ' , A = 1, 2, 3, 4, 5, 6. (28) 

Д о к а з а т е л ь с т в о Bn. По лемме 4.5, очевидно, имеем 

j | C 7 f 4 c / o c « * P 1 6 + \ 

алее, 

f | C 7 | 2 4 + 8 x dv^P1™^, л = 1 ,2 , (29) 

J|C 7r + I 6 X
 Л с < Р 3 0 + 1 5 Х ^ , X = l, 2, 3, 4, 5, (30) 

f | C 7 r + 3 2 X c / a ^ P 1 0 5 + 3 l x + t , X = l , 2, 3, 4, 5, 6, (31) 

J [ C 7 r + 6 i X r f a < P M + ' , 1 = 1 , 2 , 3 , 4 , 5 , 6 , 7 . (32) 

Д о к а з а т е л ь с т в о Д > По лемме 4.6 с р. = 4 и по (8), имеем 

$\s8Fd«<4P^. ( з з ) 
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Далее, по лемме 4.6 с р. — 3 и по 4 , 

Аналогично предыдущему методу, получим 

{ I Ss Г ш da <4 Р 3 0 + т + * , X = 1, 2, 3, 4, 5, 

J |£8Г+32Х
 < / « ^ P 1 0 5 + 3 U + \ л = 1, 2, 3, 4, 5, 6, 

J l ^ r <*х^Р 3 5 4 + % 

f rfa<^ P 3 ^ - , A = i, 2, 3, 4, 5, 6, 7. 

Д о к а з а т е л ь с т в о B8. Имеем 

jl8-H6X d x ^ P m + \ x=o, 1, 2, 3, 4, 5, 6, 

C8 

|114+32X e f c < ^ P 9 9 + 3 1 x + \ A = l , 2, 3 , 4, 5, 6, 

Ql 
|306+64Ä с/ а <^Р 2 8 5 ч - в З Х + % A = l , 2, 3, 4, 5, 6, 7, 

C8 

j 754-K28X c / a ^ P 7 2 6 4 " 1 2 7 ^ , A = l , 2, 3, 4, 5, 6, 7, 8. 

Д о к а з а т е л ь с т в о <49. Имеем 

s9 

|18+16X e f a < ^ P 9 + 1 6 X + \ 1 = 0 , 1 , . . о 6, 

|114+32X < f o < * P 9 9 + 3 l X + e , 1 = 1 , 2 , . . . , 6, 

sa 
|306+64X rfa<P285H-e3X+', 1 = 1 , 2 , . . - . 7 , 

s. |754H-128X c / a ^ P 7 2 6 + 1 2 7 X + % 

sa 
|882+256X da<£Ps53+255k+\ 1 = 1, 2 , . . . , 8 . 

Д о к а з а т е л ь с т в о B9. Имеем 

J |C 9 r o + l e X c /a<^P 1 0 + 1 5 x + e , л = 0, 1 , . . . , 5, 

J j СТИХЛО» rfa ^ рйн-ЗП-^ À = i, 2 , . . . . 6, 

JIC9 | 2 9 2 + 6 4 X <fo <4 p 2 ™ " " , A = i, 2 , . . . , 7, 
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JIC 9 Г + 1 Ш da / > ™ « * ~ , X = 1, 2, . . . , 8, 

f | С , | я м а Л ^ Р 1 Ж И Ш 4 * , X = l , 2,.. . , 9. 

Д о к а з а т е л ь с т в о A1Q. Имеем 

j \S10 Г с/ос < / > 1 0 + 1 5 Х + \ X = 0, 1,.. , 5, 

J I I ™ da Р 8 5 + 3 1 Х + \ X = 1, 2,..., 6, 

J|^a„r+MX
 с / а ^ / > 2 7 1 + в з х + « , X = l ,2, . . . ,7, 

J" | 1̂0ГЖ
 ^ < Р 7 1 2 + 1 2 7 Х - , X = l, 2,..., 8, 

J |^r+8m
 < f c < ^ x = 1, 2, . . . , 9. 

Д о к а з а т е л ь с т в о i? 1 0 . Имеем, очевидно, 

J l c . o l 3 8 ^ / ^ . 
Далее, имеем 

J |C 1 0 r i a <fe<̂ />™-', X = l , 2 , . . . , 4 , 

JIC 1 0 Г2+321
 cfc < P 8 7 + 3 1 X +*, X = 1, 2,..., 6, 

f|C1 0r+^ da^P™™* X = l ,2, . . . .7, 

J|C ] 0r+ 1 2 8 X
 rfcc^P7™-, X = l, 2 , . . . , 8, 

JIC 1 0 Г + 2 5 6 X <fe < > = 1 2 9 > 

f I | 4 0 7 0 + 5 1 2 X <fo ̂  p « ™ - X = 1, 2,.... 10. 



ГЛАВА V 

Теорема Виноградова о среднем значении и ее следствия 

1. Формулировка теоремы 

В этой главе излагаются наиболее известная теорема и ее следствия, 
принадлежащие И. М . Виноградову. Эта теорема является основным 
принципом новейших исследований аналитической теории чисел. 

Т е о р е м а 7 (Теорема Виноградова о среднем значении). Пусть 

/(х) = н ь аг х 
и 

р 

Тогда для b = b(k) = 2b1=2[±(k + l)(k+2JJ и п < с х (к) мы 

1 1 

J - S\Cird*1...d0Ll^C1(k)P 

имеем 

где (j =(1 — ау\ a = - p • 

Теорема может быть сформулирована в несколько иной форме. 
Число решений системы диофантовых уравнений 

г Ьп 

v=l vsr-H. 
где г — любое целое число ^bnf будет 

Доказательство теоремы существенно зависит от леммы 5.1, дока­
зательство которой упрощено и уточнено автором. 

4 Труды Математ. ин-та, т. X X I I 
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2Ф Леммы 

Лемма 5.1. Пусть Р = # # , # > 1 , Я > 1 и 

1 < & < & < • • • < & < # » Л — ? v ~ i > l » 

причем gx,.. •, & — целые числа. Пусть x v — переменная, лежащая в интер­
вале 

— * > - ь & — 1 ) Ä < * V < — < D - H A Ä , | Ö | < A 

Тогда число систем целых чисел X j , . . . , ^ , для которых выражения 

^ + . м + ^ , 1 < А < £ (1> 

лежат соответственно в определенных интервалах длины ^ 
( 1 < А < £ ) , будет 

< ( 2 Ш ) 2 

Д о к а з а т е л ь с т в о . Лемма очевидна для & = 1 . Допустим, что она 
верна для Ус— 1. Пусть хг,..., xfc и i^ , . . . , yh две системы целых чисел, 

причем обе удовлетворяют требованиям леммы. Пусть sÄ = ^ хД 

ft 

s / = 2 И 1 П У С Т Ь и üh являются соответственно А-ми элементарными 
симметрическими функциями от X j , . . . , лгА и от у д , . . . , ук. Тогда, по усло­
виям леммы, имеем 

i s . - s / K P * - 1 , 1 < Л < Л . (2) 

Мы можем вывести из (2), что 

\°k-*k'\<GbPf*, 1 < А < ^ . (3) 
Действительно, (3) очевидно для А = 1. Предположим, что (3) справед­
ливо для 1, 2 , . . . , А — 1. По известной теореме о симметрических 
функциях имеем 

*k — ° 1 *Л-1 Ч *А-2 ( 1)ЛА<>=0 
И 

4 - < d + < 4 _ 2 (-1)*К = 0. 
Так как |<y,l^(v )Р\ \sv\^.kP\ то для l = ^ v < A имеем 
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<((2̂ r1>fe-.-(J))p*-1< 

Тогда для к^2 

2 
v=2 

< - | ~ ( 2 £ ) * - 1 Р * 

Следовательно, для |.ЛГ|^Р, имеем 

V <*) = K Z - хх) • . . ( Х - x t ) - ( Z - Л ) . . . СУ—ЛГ*)1 < 

к 

Л=1 

3 

Так как \^—лг„|^>Р для v = l , 2 , . . . , Л—1, то 

Следовательно, число значений хк9 удовлетворяющих (1)у ^(2kHf~'t. 
Далее, для фиксированного х̂  числа 

h Ä * W j 1 < А < £ —1 

лежат соответственно в интервалах длин <J P4"1 (1 ^ h ^ к — 1). По 
предположению индукции, число систем хг,..., x t — 1 будет 

< ( 2 ( £ - 1 ) # ) 

Для À = 2 означает нуль. 

v=2 
4* 
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Таким образом, мы получаем нашу лемму, так как 

i - (*—1) (*—2) _ i - i ( f c - l ) 

( 2 ( к - 1 ) Я ) 2 (2kHf^^(2kH)2 

Л е м м а 5.2. Если в лемме 5.1 заменить (1) через 

то лемма также справедлива. 
Д о к а з а т е л ь с т в о . Неравенства (2) в доказательстве леммы 5.1 

теперь заменяются через 

Мы заменяем xf через yi9 а через xi9 если ^ = — 1, тогда получаем 
систему неравенств того же вида, что и (2). 

Лемма 5.3. Система целых чисел (g i , . . . , g^il^g^H) называется 
правильной,* если имеется (по меньшей мере) к из них, например 

j ! , . . . , ^ , удовлетворяющих неравенствам 

Число неправильных систем, для которых l^g^.H, будет 

< 6 ! 3 Ь Я " - 1 . 

Д о к а з а т е л ь с т в о . Мы располагаем (gx . . . gb) следующим образом: 

Пусть — g w ' = / r Если система неправильна, то имеется самое 
большее к—2 значений / , удовлетворяющих условиям / V > 1 . 

Теперь рассмотрим системы, имеющие в точности <г(0<^<т^&) зна­
чений / с / V > 1 . Число различных расположений этих с значений / 

будет <у г ) • Таким образом, число различных систем будет 

<( 67 1)я а- |- 12*- 1-% 

так как 0 < J / V < ; / / — 1 и l^g^^H. Поэтому общее число непра­
вильных систем gi . . . | / 6 будет 

*-2 
<2(^7 1 ) ^ < ( 1 н " 2)*""1 Я * - 1 < Зь Я * - 1 . 

о=0 

Получаем лемму, так как число систем (g19 . . ., |&), соответствующих 
будет < i L 

* Автор употребляет термин ,, well-spaced set". — П р и м . ред . 
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3* Доказательство теоремы 

1) Пусть R^ = R2s (Р) означает число решений системы диофантовых 
уравнений 

8 8 

2 У = 2 У ' 1 < ^ < / > ( = Р 1 ) . (1) 

Для доказательства теоремы 7 достаточно установить, что для 

имеем 

где <7 = (1 — а)п и с — абсолютное постоянное. 
Пусть гЬп означает число решений системы 

2 2 * * = 2 2 ^ ' ь=2Ь» (2) 

где 

Лемма 5.4. Имеем 

Rbn<(ePir(P1---Prbmaxrin. 
(Ü 

Д о к а з а т е л ь с т в о . Имеем 

î î 

Pàn=j* • • • j I *$i [ ô n • • • Ж*** > 
о о 

где 

Разделим интервал 0 < J C < ^ P на q2 = [ P J P J 1 части, каждая из 
которых имеет вид 

ß < * < ß + p 2 ' , о < / у < р 2 

равных частей и одна неполная часть). Разделим снова преды­
дущий интервал на q3=[P2jP^\4-l частей, каждая длины ^ Р 3 , и т. д. 

Пусть 

S , = 2 e < / ( * ) ) , 
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где суммирование распространено на один из частных интервалов после 
(t—1)-го деления. Тогда 

где 2 означает сумму < 7 т слагаемых В частности, 

9i 

При помощи неравенства HSlder'a имеем 

и, аналогично, 

! 5 2 | M » - i ) < | ^ | * 7 3 « ( - 2 , - i 2 | ^ | . ( - 4 и т. А. 

Таким образом, 

I S, f < . . . Чпь-г V К, 

где суммирование распространяется на </2 • • • <?п сумм, каждая из которых 
имеет вид 

Заметим, что интервал суммы Si+.x является частичным интервалом 
интервала суммы St. Поэтому существует целое W (т. е. любое целое, 
лежащее во всех рассматриваемых интервалах) такое, что интеграл 

о о 

равен числу решений системы 

J . . . J j Sx . . . Sn f dccx . . . с/ос* 

M b{ 

22** л =22*-
t—l 5 = 1 t=zl 8=1 

W-<*t<Xis, y t a < W - < * t + PP | * , | < P « . 

При помощи подстановки xia— W=x!

ia9 yi8— W=y'i3 убеждаемся в том, 
что этот интеграл при определенных CÙ̂  равен г 5 | | . 
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Так как 

< Л-(Л •.. « - ((г * i ) - ' . . . (i-jJ- ))' 
И 

(тг - 1 ) 1 O j r ( l -4- ^ ) H - . . . H- log ( l - * - ^ < ^ - H • • • 4 -

D» r>a * 
H—1 ^П—1 

то мы получаем лемму. 
2) Пусть 

Тогда (2) можно переписать в виде 
п « 

i=zl t=l 

Очевидно, 

Пусть Ф^— число систем xt,i,..., Xt,bt; ytfif...9yt,bt таких, что ЛГ/Л>—Yfî 
лежат соответственно в интервалах длины ^b1nPt

h(l~~a)(l^.h^:k). 
Тогда 

Действительно, для данных x v e, y v s ( l ^ v ^ ^ — 1 , 1 ^ 5 ^ 6 Х ) , имеем 

< 6 1 ( Р ^ 1 - ь Р ^ - ь . . . - н Р / ) < 

Таким образом, число систем целых чисел од,...,**,*.;^*,!,...».?*,*,. равно Ф̂  
Следовательно, мы получаем (3). 

3) Оценим теперь Ф*. Для простоты мы временно будем пропускать 
индекс t Именно, мы будем оценивать Ф, которое является числом 
систем х, у таких, что 

с = 1 S=l 
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лежат соответственно в интервалах длины ^,nb1Ph^L"^ (l^h^ik). Мы 
будем пользоваться также обозначением уе=хь1-+*. Делим интервал 

на 2 х равных частей, каждая из которых имеет вид 

— i ) i ? T < x T e < — « - ь & я * 

где Rt=P2~~T. Будем называть это т-м делением. Пусть 

т 0 = [а1огР/1о£2]-ь1 и т < т 0 . 
Тогда 

Я т > Р 2 - т « > у Р ! - а > 1 . 

После т-го деления мы имеем 2Ö T систем частичных интервалов, и каждая 
из этих систем приведена в соответствие с системой целых чисел 

ёъ • • ^ < 2 Т -

По лемме 5.3, число неправильных систем после т-го деления будет 

< 5 ! 3 Ô 2 T ^ > . 

После первого деления число правильных систем будет 

Разделим каждый интервал неправильной системы (число их ^ 6135 2*""1) 
на две части. Очевидно, число правильных систем, возникающих от выше­
указанных неправильных систем, после такого деления будет ^ b\ 3Ô 2^~ 1 + 6 -
Число неправильных систем после (т — 1)-го деления будет 

< è ! 3 6 2 ^ " 1 ) ^ 1 ) . 

Мы снова делим каждый интервал на две части, тогда число правильных 
систем после такого повторного деления будет ^ 6136 2(̂ -i) ( А ~ 1 > + Ь . Эти 
правильные системы мы будем обозначать Wx (Заметим, что Wx обра­
зовано при помощи ^ЫЗ*2(т~~1)(*"~1)+& правильных систем интервалов)» 

Пусть Ф^ означает общее число систем х, у, для которых 

ХЪ-уЬ, - a + f e - l ) Ä t < ^ , < - » + f t Ä , (4) 

лежат в интервалах длины лР А ( 1" а ) , где числа g пробегают системы Wx» 
Далее, пусть означает общее число систем х, у9 для которых 

разности (4) лежат в интервалах длины ^Ьг nPh(l~a\ где числа g про­
бегают все неправильные системы, получаемые после т-го деления. 

Следовательно, 

Ф < ^ ф О - ь 1 г ( Ч 
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систем интервалов длины ^ JP*-"X(1 <J А <^£). Таким образом, для системы 
интервалов Wx9 (4) имеет самое большее 

систем х9 у. Так как в Wx число систем 

то 

= è!(ni1)
fc246.2 u 1P 2 . 

Далее, мы имеем, очевидно, 

^ ( т ° > < Ы З 6 • 2^^ +h Rh < 

^ s . То 

< Ы 3*2*-*+1 2Т° C*-1-« < 

т 0 ( \ i ( H - l ) + l f c - 1 - б ) 4 - 1 ( 1 + 1 ) 
так как 2 т °>Р в . 

Заметив, что 

4) По лемме 5.2, число систем целых чисел х9 у таких, что 

лежат в интервалах длины ^ / > , ' _ 1 , где числа g образуют систему, при­
надлежащую к будет 

< (2* • * ( [ R r ] -+- If-" < 

Делим систему интервалов длины <^ fex nP''<1 - a ) (1 <^ А <^ &) на 

1 P * * ' — Г Т Т — Vя г 
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находим: 

<Ы24 6 (пЬ 1 )*Р 

5) Возвращаясь к нашему старому обозначению из 3), имеем 

Ь - (*+1) 

m при помощи (3) находим 

г1п<(Ы(пЬ1?24У(Р1...Рп)Ь а(*+1). 
По лемме 5.4, получаем 

А к 1 < ( * » Ы ( | 1 б 1 ) ' 2 4 Т Л , " ( Л . - . ^ < 

U » * ) V ~ w * 4 a ~ * 
З а м е ч а н и е . Из доказанного следует, что если л = о(е*), то пре­

дыдущее неравенство принимает вид 

/ 1Л\п6
 D 2 2 

для P > ( n — î p a - o - * . 

4« Первое следствие теоремы 

Т е о р е м а 8. Пусть f(x) — многочлен с целыми значениями степени k; 
тогда 

где 

Ьп 

* = 1 

<к^с3(к)Р 
tm — k •+- ~ * (к 1 ) ст 

6 = 2[4-(*-н1)(А-н2)], * < T I < * 4 ( £ ) , * = (1 —а)". 

Д о к а з а т е л ь с т в о . Как и при доказательстве теоремы 4 (глава III), 
мы можем предположить, что f(x) есть многочлен с делыми коэффи­
циентами. Пусть 
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Число решений уравнения 

/ ( д г 1 ) н - . . . ^ / ( х б 1 н ) = / ( ^ 1 ) ч - . . . ^ / ( у 6 Д 1<лг, у<,Р 

не превосходит числа решений системы 

х * - + - x \ i n - g 1

h - . . . - i , \ i H = H h ) 1 < А < * . 

где числа N удовлетворяют условиям 

Так как Nk<^Pl, то имеется 

(D 

(2) 

<^Р , 1 + 2 + . " + * — 1 = Р 2 

систем Л^, • . •9Nl9 удовлетворяющих (2). Действительно, Nk определяется 
однозначно при заданных Nh(l^h^k — 1). 

Для фиксированных Nv . . и Nk число решений (1) равно 

6п 

* = 1 

По теореме 7, этот интеграл будет 

^е(*кх*ч~...-*-*гх) £/аг . . . d<zk<^. 

Следовательно, 
6n 

dœ<gP 

5. Второе следствие из теоремы 

Л е м м а 5.5. Пусть a*, — вещественные числа и пусть 

х=1 
• а т х -+- а. 

< ^ Г > (Ä,qr) = l , <7>0, Р < < / ; 

тогда для любого положительного целого Pi^P имеем 

S < С5 (*, s) P ^ Л 2 (1 -Ь lojr g)) И'--Н й , 
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где 

и 
6 ' = 2 ( [ | ^ ч - 1 ) ] н - 1 ) -

Д о к а з а т е л ь с т в о . Пусть 

тогда 

т. е. 

у = 1 о=1 m=pi \ т=2 т=Р 

:PlS+0(p*), 

Пусть 
/ ( ^ + ? ) = Л ^ + Л ч ^ л, 

тогда 

Д. = аА, i4*-i = ocjb-i - ь ifeocÄ . . . 

По неравенству Hölder'a, имеем 

Далее, 
Pi P I P I PI 

i*r=2- 2 2 - 2 
±bfn ---b'n 
2 2 

где 
ф = / (* ! -+-# ) -* - . . . — / ( V - + - ^ ) — - - - — / 

= А / х . * н ь . . . + x \ — x / * — . . . — л А \- t -

Пусть ф(Л^,...,M—i) означает число решений системы 

-г- г/» ь'п 
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Таким образом, 

2 u i " < 2 - 2 2 - 2 2 ' 
2 

Pi p l 

fc—1 

=2--- 2+(^—*u 2 е ( А - х ^ - 1 ч - - - - + л ^ ) 

так как Л А не зависит от у. 
По неравенству Cauchy имеем 

2 |^й; 

Jfc-1 
Pi Pi *1 

1 
2 \ 2 

* \ 2 * • • 2ф2(ДГ1 ^ 2 • • • 2 2е(л*-л-1"к--ч~Л1^) 

Во-первых, 

л—1 

2---2^(^--*'^) 
равно числу решений системы 

(1) 

(2) 

1 1 _± Ып 

= ^ + . . . + z \ _ z " ' _ . . . _ z ' * , 1 < А<>Ь — 1. 
2 

Таким образом, (2) не превосходит 

1 1 Pi 26'« 

О 0 х 

Так как 

2 6 ' = 4 ([-g-ife(ife-i-. l)]-t-l)>2[4-Ä(*-bl)] ( = * ( * —1) в теореме 7), 
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то, по теореме 7» 

Далее, по лемме 1.8, 

PI 

2---2 2 е(Л*-^ 
_ И l-t—2 

< / » 1 

1 P Р 
± ( * _ 1 ) ( * - 2 ) 

2 2 2 e (* e » A ^fo-Ä>)«« 
ft Vi 

P Р 

22™° И - 1 ' С Е Ж ^ Г ) ' ft Уг 

Так как число решений уравнения к fa—#2)=^ будет ^Р, то 
по лемме 3.5, ввиду P^q 

p р 

ft ft У 

Поэтому имеем, наконец, по (1) 

Следовательно, получаем 

S < ± ( * » - • > - Д ( ! , fa, , )')"' ч - л « 

Т е о р е м а 9. Пусть ос̂ , • . ос0—вещественные числа, к^14, 

/ (x)=oe Ä x*- t - . . . -f-a, 
Of 

a . <i (h,q)=l, q>0. 
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т. е. 

Но мы имеем 

Тогда для 

имеем 
р 

2 e ( / ( * ) < c ( i , e ) P ^ , 
Х=1 

где 
. 2 

Д о к а з а т е л ь с т в о . Берем 

l o * ( i * ( * - l ) I o j r l P ) 
Л = ^ j—г Ы . 

Тогда 
n > £ — 1 

i ^ ( Ä - l ) , ' = i ^ ( ^ - l ) ( l - ^ ) " < 2 l i r -

Далее, в лемме 5.5 берем р1 = Р1~?. Достаточно будет показать, что 
1 

1 — 1 <г'£ (* — 1) (1 - р) -+- (к — 1) р > 2Ь'п? 

2b'n—^k(k — l)c'-i-k — l , _ £ . 

6 ' < ^ £ ( £ - | - 1 ) - ь 2 , 

< (k - 1 ) log- (lâ log- * 2 ) ( l - 2 ^ Z T ) ) + 1 < 

< ( £ - l ) l o g ( * 2 I o £ # ) . 
Так как 
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" 21og/t 

< ( ( т * ( * - ь 1 ) ч - 4 ) ( * - 1 ) 1 о * ( # 1 о * Л * ) ч - * ) < 

< ( т Л? log (/У log # ) -.- 4 * log log lé)) (l н- = 

= | P l o g ( Ä 2 l o g ^ ) - i -

, 0.62 0.62 , 41о8г(Шоу4 2 ) / . . 0.62 \ \ ^ -
-HÄ» log l o g / У ( î ^ p - H - a i o g i t н - moSlog» (l4-Wkl)< 

< у Л3 log (/Ь2 log Л») и- (0.373 -ь 0.118 и- 0.106) /с3 log log Jê < 

< y & 3 (log &2 -ь 2 • 2 log log lê). 

Для P 1 - £ ^ <7 < P делим 

я* [Р1ч] 1 части, каждая из которых <^ q1-?, тогда 

р 

б* Третье следствие теоремы 

Лемма 5.6, Пусть 

* = 7 ~ ^ > | 9 | < 1 , (А,<7) = 1, 9 > 0 

=2 mînfo (Д*;*); 
тогда 

Д о к а з а т е л ь с т в о . Полагаем 

ДЛЯ £^>14, ТО 
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тогда 

где г—наименьшее абсолютное значение целых чисел = hz-*-d (mod q) 

Таким образом, r ^ y ç . Каждому г соответствует самое большее два 

значения z. 
Для 2<Сг^-т£-—2 получаем 

Берем 

тогда 

г-*-2Ь'^> г —2 

Лемма 5.7. Пусть 

qU »]-ьб; 

<Ur^qz\r0<^ 

a?—1 

s — фиксированное целое и 

a ^ 

Тогда при любом 7 ) < Р 

s < p 2 & п Ч 8 * * ( i ^ ^ - j b - \ 
где 

я > * - 1 , 6 = 2 ^ = 2 [ 1 * ( * - * - 1 ) ] , *' = ( l - ^ ) * , 

x > j f e _ s 4 . l f ß = [ | ( * - s - b 2 ) ( * - s - + - 3 ) ] , °" = ( l — £ = 7 ) * . 

Д о к а з а т е л ь с т в о . 1) Как и в доказательстве леммы 5.5, имеем 

S = ^ ^ e ( f ( y + x)) + 0(-n). 
у=1 х=1 

По неравенству Hölder'a, 

5 Труды Математ. ин-та, т. X X I I 

яв=1 
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Пишем 
fis) 

i t ! 

где 

= Ук-+- Y^x-t- . . . -f- Yux*, 

•(.ll)a.*-*-C_î)a-̂  

r0 = a s. 

Можем написать 

где 
-f-... -I— X7l „ ' ЛГЛ 

(2) 

1 < А < £ — 1 

и суммирование распространяется на всевозможные такие значения. 

Для данной системы £ Л ( ^ Р \ 1<^А<^&— 1 ) число решений (2), 
по теореме 7, будет 

<р 

Так как YQ не зависит от у, то 
I I P pk—i 

^\Т\*»^Р 
у 5i fc-

2 e ( ^ F ^ 1 H - . . . ^ i r i ) | < 

(3) 
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где 

U у у* 

2) 11меем 

где 

Поэтому 
\ 9 У' 

ßx 

где 

V = Zle(U(cLk z ^ t + 1 -+- . . . а, ̂ )), 

^=Ст-Т0 w • • -А - • • • 

По теореме 7, число решений системы (5) будет 

2ß* — \(*—*DC*~* + 2)+ ~ (к — *-+-1)(* — s -+- 2)о" 

2ßx - -i- (*—*-+-1 ) (* — « 2) + i- к (к - 1 ) а" 

так как 

(«-1=ЬлГ<(»-»е1Г 
Поэтому, по лемме 1.8, 

к — ч -m:—ч 

7] rfi—S-H 

* 1 «9+1 

так как и=1,_г-%,_х и ^ ^ Р " . 
Следовательно, по лемме 5.6, 

i (к— * -ь 1) (*— * 2)-1 4 

X У < pv,2 max ^ min ( p » - » , n j ^ j -

< P7J 2 ( i Н-1 ) Р-* (1 Ч- Ы ) = 
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3) Из (4) и (6) получаем 

•i-(*-* + !)(*-*-*-2) - х г 

Далее, по (3), 
1 

4ßx 

Наконец, по (1), получаем 

5 < Р 

Л е м м а 5.8, Пусть 
р 

vi 1 
W ч ч/> 

. • -4- OCj х) , 

<7я ^ 
1_ а — 2а7 * —~- а - i - а7 

^ 2 < < 7 . < T S = P 2 ; 

тогда для 1 < s < ^ & имеем 

23-2^(iog-2Jfc)2 

З а м е ч а н и е . Лемма может быть улучшена введением теоремы 5, 
но получаемый результат не влияет на дальнейшие результаты, каса­
ющиеся „первого порядка". 

Д о к а з а т е л ь с т в о . 1) s = k. Прежде всего рассмотрим случай 

к ——a -h а7 

2 
Полагаем 

тогда 

P<q<P 

log ( у 
-»-1 

n<5£ log-£ , ^к{к— l ) a ' < û 3 , 

£ ' < 2 ( Ц - £ ( * - * - 1 ) ] - + - l ) < £ 2 — 1. 
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В лемме 5.5 берем р1 — Р1-?. Достаточно доказать, что 

Действительно, 

< 43 k* log к. 

Далее, рассмотрим случай P < q^Р. Разделим интервал 1 <^ лг<̂  Р 
р 

на <^ -- частей. По предыдущему результату, сумма, соответствующая 

каждой части, будет < ^ < 7 г ~ р . Таким образом, 

S^Pq-t^P U 1 . 
Так как 

\ 2 а ~ 2 a V P ^ 43 # log* ^ 43*Чо** ^ 89*Но*Л > 

> 23.2Ä3( lo f f 2i tp 

1 1 
43 Л* log.jfe ^ 23 . 2tf(lo* 2fc)2 ' 

то получаем результат для s = k. 
2) l < s < C & (следовательно, k^3). Берем 

п = Р1-*\ 
тогда, по лемме 5.7, имеем 

Полагаем 
4 = ^ - - н Л 

Мы докажем, что 
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тогда 
n<(k-l)\og ( i f AMof tt»), - | * ( * - 1)<т'< ю » 

1б#1о г 8£> 
Получаем 

105 
256** log 8*3 

/ 7 . » < * - 1 ) Лк{к + 1)п 

Далее, имеем 

71 = 
log ^ * < 4 o g 8 * s ) 

-Ч-гКГ1. 
Поэтому 

I . < ( Ä - 1 ) 1 O B ( ^ Ä » I O , № ) . l ^ i l ^ ^ g ^ p , 

16** log-8*3 
105 

256*4 log 8*3 

Следовательно, 

где 
105 

> 

1 2 8 * 6 ( l - i - ö ) n l o g 8 * 3 

35 

fÉ3 ^ 

105 

128*7 (log 2*) log ( y (2 *)6 log 2 * ) 

128 *7 (log 8*3) log ^ * e log 8 *3j 

> 5* > 
128 X 6.32*7 (log 2 * ) 2 

> 23.2*7 (log 2 * ) 2 

Получаем лемму для 1 < s < к. 



ГЛАВА VI 

Тригонометрические суммы, содержащие простые числа 

1. 

Целью настоящей главы является доказательство теоремы 10, явля­
ющейся основным принципом аддитивной теории простых чисел. Тео­
рема в существенном принадлежит И. М. Виноградову*, если не считать 
некоторых видоизменений, необходимых для совместной проблемы; мы 
пользуемся сокращением L = log"P. 

Т е о р е м а 10. Пусть 0 < Q < c 1 ( £ ) L a * и 

p=t (mod Q) 

где 

*шсла ос вещественны, (A, q) = l и U<Cq^PlLT*. Тогда при любом 
данном о"о>0 имеем 

..S | < < * ( * ) P L - * ( Г 1 , 
при условии, что 

* > 2 6 * ( * о - ь * 1 - ь 1 ) . 

2. Необходимые леммы 

Л е м м а 6.1. Для с- 2^2 3^—1 имеем 

2' О (Л/(1о г М П ) , 

где 2 ' означает сумму, состоящую из всех слагаемых, удовлетворяющих 
условию 

( 1 о г М ) ° * < с 3 № ) ) ' . 

* Труды Математического института, Тбилиси, III, 1937, 1—34, 35—61. 
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= О (M(log M)*3 - 1 ) = О (M(loo; ВД. 

Отсюда лемма следует непосредственно. 
Лемма 6.2. Пусть /—положительное целое IS* ), Q — целое <^ L \ 

f (х) = jlx * ! дс»-1 + . . . + а и 

где (А, г̂) ===== 1, числа ос вещественны и IS<Cq^F* L~~a Тогда для 

* > 2* (<70 - f - <т8) -ь 2Â: а 4 -н 2 3 <*~2> 
имеем 

5 = 2 е № ) ) = 0(Л/ .-°о), 

где P^PIQI. 
Д о к а з а т е л ь с т в о . Пишем »S в виде 

S=^e(f(l'(Qx4-t'))), P 2 = P (Q , / ) /QZ , 

где /' = //(Q,0 и —решение сравнения lx=t(modQ) (если не суще­
ствует, то лемма тривиальна). 

Лемма очевидна для k—1, так как, по лемме 1.8, 

1̂ 1= 

Предполагаем £ > 1 . По леммам 3.3, 3.4 и 1#8 имеем 

или 

где 2 означает сумму правой части предыдущего неравенства. 
Полагаем 

z^V'ÇtkM^..^, ( 2 ) 

тогда 2 < / / 1 С 1 > И Р 2 * - 1 = Ж 

Д о к а з а т е л ь с т в о . По лемме 2.5, имеем 
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так как log- log Р. По лемме 3.5, 

2 < MIT** Р% -ь - Ы ) (/>, -ь g log g ) ̂  

<^ / \ * (L* а 4 ) ~ С Т 2 -+~ Z/2"1"* С о з + ^ * ~ а + 

так как 
MP2<^lfk (?Р2* = Рь<4Р*1*Ь+*\ 

Выбирая 
а2 = 2*"1 (<т0 -ь а,) + Ье -ь 23<*"2> - 1, 

имеем 

так как 

*)> 2fc (с70 * 3) 2 ^ ^4 23 с*-* ). 

Тогда, согласно (1), 
I .S |2*~"1 <^ Р2

2*""' - * P!*1 L"-2*~' а° ~(2*""1 -* ) а з <^ 

^ P ^ Z , - 2 * ^ 

Лемма 6.3. Пусть / — целое число и пусть 

где (Л, 7) ===== 1, а' — действительные числа, U < q ^ P* L"41; при сумми­
ровании с? пробегает некоторое множество (d) чисел, удовлетворяющих 
условию 

D<d^D', l < D < j = P1$ Z)'<2D, 

и, при фиксированном df m пробегает некоторое множество (m), удо­
влетворяющее условию P^d^m^P^d, где Р'— некоторое число > 0 . 
Тогда для L°s<D<Pir°e 

Ь<^Рг1Г*\ 

Для фиксированного z число решений (2 ) будет ^ dk~~2 (z). По лемме 6 . 1 , 
для ог2^23(*~2> — 1 имеем 

таг)' 
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при условии, что 

ег, > 22* ого. * б > (2* + 1)̂ 8 + 2 2 1 ^ (г0 - ь г3'2*-1* 
и 

G > 2* <73 - ь 2 * * + 1 <х0 - ь 23 С1*"1). 

Д о к а з а т е л ь с т в о . 1) Для простоты обозначим PQ = \ P ^ D ' \ . Со­
гласно неравенству Cauchy, имеем 

d 

^e(f(ldm)) 
m а) 

х m mi 

где x пробегает все целые числа в промежутке 0<^х^1У9 a m и тг 

при фиксированном х пробегают некоторое множество (m), удовлетво­
ряющее условию 

Р' ^Рг 

(2) 

Изменив порядок суммирования (1), получим 

'h 

mi m а 

где m и т1 пробегают некоторое множество (m) такое, что 

0 < т < / > 0 , 0 < т 1 < Р 0 , 

а лг, при заданной паре значений m и т19 пробегает все целые числа 
в промежутке 

max ( Д - , —)<*<min(Z)', Û-AV 

2) Имеем 

где 

m x у 

2 е ( А / ^ ^ - т Л - ь . . . ) | 

(3) 

и дг пробегает целые числа в промежутке 

max(Z)", £ ) < * < т ш ( Я " ' , £ ) , 

Z)"=max ( Д Z)"' = min (£>', Jj) • 
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D 7) 

Si s* « 

Суммируя по g и меняя порядок суммирования, получаем 

В D Р0 

' • • • У У el 
У Si 

3) Для &==1 имеем 

D I Р0 

S* У 

< £ > ( ^ H - l ) (Po-bçlog^). 

В силу (2) и неравенства Cauchy, 

<^(M(i*ïjç«)) • 
Теперь получаем 

< Pi (Z,"*-" н- ZT" 5 -+- z 2 ' * - ^ 1 —H I^ - "*- 1 ) * < 

так как 

Согласно леммам 3.3 и 3.4, 
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4) Применяя неравенство Hölder'a, имеем 

2 е ( А / у Щ 1 . . . д D В 

2 - 2 
\%к—1 

В Р0 

Si S* у 

Согласно леммам 3.3, 3.4 и 1.8, имеем 
\к—1 

2*-i 

Ро 

поэтому, в силу (5) И (6), 

( 2 - 2 K W ' 4 ) 
D Р„ Р0 

\2*—I 

1 

} 
5) Часть суммы, соответствующая членам 

очевидно, 

Число решений уравнения 

z = Z * £ ! 2 £ 1 . . . £ i n 1 . . . 7 ) i _ 1 , 

очевидно, < ( с / ( г ) ) 2 * - 1 и \z[</*£>*Р0*-1-

Обозначим M=tD*Plc~1. Согласно (7), (8) и лемме 6.1, 

,-i.2*-i_i D 2 * - i - ; 
• i-> IQ 

если ^ > i , < B - » - l 

2-2|2«(7^«.-5 .) |Г< 
^Z) 1- 2* -' Pf"1 (ZT°S-+- Z.'3-1*) •+-
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По лемме 3.5, имеем 

так как M<^Ü4Dk Ръ~\ 
Следовательно, в силу (9), 

V Si S* У ) 

6) Возьмем 

так как 

* s > 2 а «го, с6 > (2£ ч-1) * 3 н- 2 а + 1 <т0 -ь 2* ( 2 *- г ) 

И 
(7;>2&<JgHb2 < т 0 н - 2 л , 

то имеем 

Si S* у I 

Согласно (4), 

^ \ s f ^ P u L - ^ \ 
У 

а применив неравенство Hôlder'a, имеем 

Согласно (2), получаем и 
\a\*<DP0DP0ir2°° 

a^DPoL-'^P^0. 

3. Доказательство теоремы 

1) Пусть H обозначает произведение всех простых чисел <^ >/7\ 
Пусть (d) означает последовательность, состоящую из делителей числа /f. 
Хорошо известным рассуждением получаем 
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где ^(d)— функция Мебиуса и 

sd= 2 e(f(dm»-
dm^P 

2) Теперь мы оценим сумму 

Согласно лемме 6.2, взяв l=d, <jz=zlly а4=аг и <х0-1-1 вместо <т0, имеем 

Qd ' 
так как 

G > 2fe a -+• 2* (с, -+-1 - ь 1,) -+- 2 3 ( i _ 2 ) . 
Тогда 

2 ^ j L - ^ - ^ P Q - 1 L - ° \ 

3) Пусть (J0) обозначает подмножество множества (d), состоящее 
из чисел с четным числом простых множителей, a (d^ обозначает осталь­
ную часть (d). 
Пишем тогда 

S'= >] p{d)Sd=Tu-Tlf 

где 

Изучим только TQ, a к 7\ можно применить тот же самый метод* 
4) Рассмотрим частичную сумму суммы Т0. 

7 7 = 2 ^ = 2 й + 1 ( ^ ^ 1 ) + 2 3 ( М . 

Разобьем интервал на 0(L) частей, каждая вида 

D<d<D', £>'<2£>. 

Типичную частичную сумму, соответствующую такому подинтервалу, 
обозначим через О. Тогда 

Û = 2 2 e(/(rfm»> 
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где d пробегает ряд значений, удовлетворяющих условиям 

£ > < J < Z > ' , 2 У < 2 Д 1 > < с / < Р 1 Г \ 

и при фиксированном d m пробегает ряд значений, удовлетворяющих, 
условиям: 

р 
О <Cm^-j Î md=t(mod Q ) . 

По лемме 6.3, взяв / = 1 , <У3 = 0 , а5 = \ 9 < j 6 = > 2 и ( J o - t - G j - b l вместо^ 
с0, имеем 

так как < г * > 2 -+-2 
Отсюда следует, что 

5) Часть суммы, которую остается рассмотреть, есть 

2 7 = 2 2 е(/(^»' 
где d пробегает некоторое множество (с/0), подчиненное условию 

a m, при фиксированном с/, пробегает целые числа, удовлетворяющие 
условиям: 

О < m < Р/с/, mrfss * (mod Q). 

Меняя порядок суммирования, имеем 

7 7 = 2 7 ( m ) ' г ( т ) = 2 eV(dm»> 
m d 

где m пробегает целые числа, 

m = l, 2 , . . . , [ ! > ] , 

а при фиксированном т, пробегает промежуток 

6) Пусть (d0

f) означает подмножество множества (</0), состоящее 
из целых чисел, которые содержат простые множители где 
13 = G 0 - * ~ \ - + ~ G 1 9 a (dQ") обозначает остальную часть (с?0). Тогда 

Т(т) = Г (m) -ь Г'(m), Г (m) = i = 2 * 
W) WO 
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Число элементов из (d0"), удовлетворяющих неравенствам PL 2<^^~ * 

очевидно, меньше числа F целых чисел /, не содержащих квадратов 
и удовлетворяющих неравенствам 

1 

Р 2 < К Р , 

а простые множители / не превосходят / А Предположим, что / содержит 
^ множителей; тогда 

1 

L*h^ï>P2. 

Отсюда $^-\ Ll(\ log L). Далее, 

J(Z) = 2 s > 2 " ^ i / C X 8 l 0 g V ^ + 1 . 
В силу леммы 2.5, 

р 

i=i 

F<4PL~-l>. 
Имеем 

Г ( m ) = Г ( m ) ч - О (PLT4) = 

так как Х3 = ( 7 0 - ь Х 2 - ь 1 . 
7) Пусть 7^ (m) обозначает сумму, распространенную на такое под­

множество (</(/), каждый элемент которого содержит в точности s простых 
множителей > / > . Так как 

"ТО 

где 

r.(m)=2 e^m d))-
Здесь суммирование распространено на все d, удовлетворяющие условию 

PL~^<d^ Л = — ' 

и, кроме того, условию, что с/ принадлежат (</</), т. е. имеют в точности 
s простых множителей ^ L*3. 
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8) Чтобы оценить TÄ(m), введем общую сумму 

Tso (m) — 2 2 е (f(mav))f 
и V 

еде и пробегает все простые числа принадлежащие (d), a v при 
заданном и пробегает все целые числа, удовлетворяющие условиям 

" ~ — < С ^ ^ ~ " > muv = £(mod Q 

и принадлежащие (с^), в точности e s — 1 простыми множителями ^ / Л . 
Каждый член e(f(md)) в Т8 (m) 5 раз встречается в Т8о(т). Члены 

Tso(m)f кроме тех, которые внесены суммами Тв (m), имеют вид 

e (f(mp2 vj), < vx < -0-» 

где p ^ Z , \ а % пробегает элементы множества (с/0), имеющие в точности 
s — z простых множителя > Z > (для s = l таких членов не существует). 
Такой член встречается в 7̂ о (m) один и только один раз, потому что 

% не содержит квадратов. Для заданного р число членов <^ — • Таким 

«образом, 

T,0(m) = sT,(m) + Of 2 = 

\ J 
= sTAm) + 0(^L-l>). 

Поэтому 

9) Применим к Г , 0 ( т ) лемму 6.3. Имеем 

тде и пробегает простые числа в промежутке 

a v при заданном и пробегает элементы множества (ÛQ, удовлетворяющие 
условиям: 

(f) v содержит в точности s — 1 простых множителей ^ L3, 

(ш) тигг = t (mod Q). 
6 Труды Математ. ин-ха, т. X X I I 
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Разобьем интервал Ù^^u^sjP HaO(L) частей и к каждой частичной 
сумме применим лемму 6.3, взяв / = т п , <sz = \ 9 <У5 = Л3, в качестве 
<т6 — сколь угодно большое число, и аг + - а 0 ч - 2 вместо <?0. Будем иметь 
тогда 

Т,й (m) ̂ £ L--*-*L = £ IT*-«-1, 

так как 

* з > 2 2 i + 5„+2), « > 2*Х, -+- 2 2* + 1 (.т, + (т 0+2) + 23 (2*-ц. 
Таким образом, 

7*.M < - I T 0 4 - " 1 - 1 - + - - 1Г*»<^£ L - 1 » - " - 1 , 

так как + ^ + 
Наконец, имеем 

Г 0 = Г 0 ' - н Г 0 " = Г 0 ' - 1 - 2 Г ( т п ) < 

m m 

«S* 4 -2 2 

Следовательно, 



ГЛАВА VII 

Асимптотическая формула для числа решений проблемы 
Варинга-Гольдбаха 

Пусть f(x)— многочлен с целыми значениями &-ой степени с положи­
тельным старшим коэффициентом А. Допустим, что не существует 
такого целого qf что сравнение f(x)=f(0) (mod q) удовлетворяется 
тождественно для всех целых х. Пусть I(N) означает число решений 
уравнения 

f{pù+...-+-f(p.)=N, 

где р — целые числа (для краткости мы будем называть эту проблему 
проблемой Варинга-Гольдбаха). Цель настоящей главы — установить 
следующую теорему: 

Т е о р е м а 11. Для 

. f 2*-ь1 при 1 < £ < 1 4 , Г 2*н-1 

к 2 . 2 log log к) при к > 14, 
имеем 

с (к, s, коэффициенты/) Л/*0"""1 

^ l°z l°sN* (log Л/) 

где 

. >(?) 

^=2 еЛМШ 4 = q(d,q)9 

a d— общий наименьший знаменатель коэффициентов f(x). 
6* 
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Для доказательства теоремы 11 нам понадобится одна важная лемма 
о числе г2(р) решений уравнения 

f(xx) -ь . . . = -н . . . 0 < х,у < Р. 

Именно, при 2t>kzi\ogk-*-2.2\og\ogk) — 4 и £ > 1 4 

1 р 

' « = J I T(ct)\*dz<4P2i-\ Г(ос) = 2 ««№)*)• 

2. Предварительные леммы 

Лемма 7Л. Пусть 1. Для всякого действительного числа a суще­
ствуют целые h и g такие, что 

а-

Д о к а з а т е л ь с т в о . Не нарушая общности, мы можем предположить, 
что о с > 0 . Разложим ос в непрерывную дробь, и пусть 

А — М Ц А 
Qi ~ 1 ' Q2 ' Q3 ' 

будут последовательные подходящие дроби. Последовательность Q v или 
возрастает неограниченно с возрастанием v или обрывается. Если она 
обрывается на PsIQ9f Q Ä<^r, то cc = PsjQs9 и лемма очевидна. В про­
тивном случае существует такое целое т, что 

Q » < - < Q , m 4-1 • 
Тогда 

< 1 

Q m + i Qm Qm Qm+1 
< 

я получается ваша лемма с h — Pm, q — Qm. 
Лемма 7.2 (Эйлерова формула суммирования). Положим 

К (х)=х — М - ь - j • 

Определим по индукции: 
6,(х-+-1) = 6г(лг), 

f i , ( y ) ^ = i m (* ) — i m ( 0 ) . 

d) 
(2) 

Пусть 6 > a , а функция g(x) непрерывна на а ^ л г ^ б вместе с теми 
своими производными, которые встретятся ниже. 
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Тогда, для всякого t 

ь 

2 \ g(x)dx-*-

m а 

1-1 Ь 

+ ^(g(r)(b)br+1(t-b)-gV(a)br+1(t-a))-$gl(x)bl(t-x)dX. (3) 
•r=0 ' а 

Д о к а з а т е л ь с т в о . 1) Редукция леммы: 
1.1) Мы вправе предположить, что t = 0, так как, полагая а — t—A9 

Ь — t = B, g(x-t-t) = G(t), получим 

2 G(m)= J G(x)dx + 

В 

2 ( G " (5) ( - 5 ) - G " ( è r + 1 (— A)) — J G « (ж) bt (- *) . 

l—l 

r=0 

1.2) Так как обе части равенства аддитивны, то достаточно рас­
смотреть случай 

zu < Л < £ < о ; - н 1 , 

где w — некоторое целое число. 
1.3) Без ограничения общности можно считать w — 0 (как в 1.1), 
2) Лемма верна при / = 1, т. е. 

G(0) = J G(х)dx+G(B)b 1 ( -B) — G(0)^(0) — 

J G'(x) Wi—x) dx для Л = 0 (4) 

0 = J G(x) </*-ь G(5)Ь г (—5) — С(Л) bx (—A)-

— J G'(*)M— x)dx для 0 < Л < # < 1 . (5) 
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Действительно, 

в в 

f G'(x)b1(-x)dx= J" G'(x)(-x-[-l]-±)dx= 
A л 

в * 
= [(—*-Ц-)С(лг)] -f- j G(x)</* = 

^ А 

В 

j G (х) dx -+- ( - 5 ~н 1 ) G ( 5 ) — ( - А ч - 1 ) G ( А) = 1 

. =J G(x)dx-^b1(— B)G(B) — 
А 

( О, если -4=7^0, 

_м_4сс-о-{ G W ) i е с д в „ = 0 ; 
так как -j——y-+-l = 6 1 (0)- i - l . 

3) Индукция. Интегрируя по частям, получаем 

в 

J G® (ж) ег d * = G1" (5) Ä m « - 5 ) - G W (Л) b l + l (t-A) + 
А 

В 

-+-\G^1)(x)bl+1(t-x)dx. 
А 

Лемма доказана. 
Лемма 7.3. Ъг(х) — функция с ограниченной вариацией на всяком 

конечном интервале. 
Д о к а з а т е л ь с т в о . Лемма очевидна для так как на (0.1) 

Ьг(х) есть разность двух монотонных функций. В общем случае утвер­
ждение следует из свойства интегралов. 

Лемма 7.4. Для х=^=[х] 

Ь1(х) = х-[х] — ^ = —± 2 00 

sin 2ъпх 

п=1 

Д о к а з а т е л ь с т в о . Достаточно рассмотреть интервал 0 < х < 1 . 
Так как 

log(1 — z) — — н j , 

то действительная часть т~ log (l — е2*'*) равна правой части равенства 

в лемме. Далее, действительная часть -Кlog (l — е™*) равна 
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Л е м м а 7.5. Пусть 6 > а , a f(x) — многочлен £-ой степени. Пусть 

/ Ч * ) 1 ^ у при а^х^Ь. Тогда 

2 e W > _ \ e W ) d x 
Ch^x^b а 

Д о к а з а т е л ь с т в о . Сначала мы оценим интеграл 

jf{x)eM(™±ma)dx, 
а 

где m — положительное целое число. Так как/(дг) многочлен k-oft степени, 
то интервал можно разбить не более чем на 2к частей, в каждой 
из которых f(x) монотонна и не меняет знака. Предположим, что f{x) 
возрастает и положительна. Тогда, применяя вторую теорему о среднем 
значении отдельно к действительной и мнимой частям, получим 

%%% (J (х) ± тх) dx f(x) ,Ы 04*) ± »и) 
J m±f (х) 

так как m^Jß^ есть положительная возрастающая функция от лг. Анало­

гичные результаты получаются и в других случаях. Итак, 

о 

Следовательно, 

J ewV)f(x) s i n 2%mx dx= О(i). 
a 

Далее, в силу леммы 7.4, имеем 

f êV'W b1(-x)dx = 4 j" eW)/'(*) j? s^JLdx 
m=l 

m=l a 
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[Почленное интегрирование законно в силу ограниченной сходимости: 
ряда для Ъ{—х).] 

Наконец, наша лемма получается по эйлеровой формуле суммирования* 
Л е м м а 7.6. Пусть Ф Х (х) = е • Тогда 

где Fr(x) — многочлен степени (к— 1)г. 
Д о к а з а т е л ь с т в о леммы получается сразу по индукции. 
Л е м м а 7.7. Пусть W (дг) = e ($А fox)*). Если q < сг(k) РГ~\ 

Iß !<<%(*)q' 1 Р - Л + 1 - и 0<дг<Plq , то 

|ш ( )(х)|<с 3(Лв,гД)Р-". 

Д о к а з а т е л ь с т в о . По лемме 7.6, имеем 

I (дг) I = IW (х) Fr ((2^А)а qx) q)r \ < 

< с, (А, е, г Д ) (1 ч - ( I ß | а qx)?-* ) ( | ß | а чУ < 

< С з ( Д е , г Д ) Р - ' е , 
так как 

I ß \"Я <(с, (kWq^P-1**-"^ 

< (с2 (£))° ( C l (k))1-*^1-* 0-4-*~~ 
и 

( I ß f ? ) * * w < l ß l 4 * ( ~ ) * ~ < с2 (к) Р-\ 

Лемма 7.8. При тех же предположениях, что и в лемме 7.7, пусть 
/ ( х ) = Д ** ч *-А1х-+-Ай и Ф(л:) = е(ß/fox)). Тогда 

I Ф«0(х) I < с 5 (Л, • • •, А, h г, £ ) Р - \ 

Д о к а з а т е л ь с т в о . Лемма очевидна для к=1. Пусть 

Ф (х) = Ш (ж) Фх (х), Ф , (х) = е (ß / fox) - Л , fox)*). 

Допустим, что лемма верна для к — 1, т. е. при | ß | <^ q~* р-***— имеем 

I ^ W K ^ r • -, А , « , г , * ) Р — . 

Так как < 7 - i p - * + 2 - > ( 7 - i p - l + 1 - « > т о 

I ^ W K c . ^ - * для I ß K ^ p - ^ 1 - . 
Далее, в силу 

Ф ( Г ) ( ^ = ^ ( Х ) Ф 1 ( Х ) - Ь ( ; ) Ф ( ' - 1 ) ( Х ) Ф 1 ' ( Х ) - Н . . . - Ь \ Г ( Х ) Ф Г ( Х ) , 
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имеем 
1 Ф ( , ) ( * ) | < С 5 Р -

3. Разбиение Фарея (Farey) 

Для всякого ос из интервала — < а ̂  1 — ™ существует, согласно 

лемме 7.1, такая пара целых чисел h к q, что 

А | < ^ - , 0 < ? < т , (h,q)=l, а 
ч 

где ч — р к—1+е 

С рациональной точкой ~- из ^ — ~ ? 1 — ~ j оказывается связанным 

интервал 

Пусть ffî(h,q) обозначает такой интервал с q^p1"** Часть интервала 

^ — 1 — к о т о р а я не принадлежит ни к какому 2№(А, <у), обозначим 

через 2?. 
Никакие два 20t (A, q) не перекрываются. В самом деле, допустим, что 

Тогда 
= | ß 1 - ß | , т. e.-l-<i-_l 1 < 

Для больших Р это тоже невозможно, поэтому 

4 ( Р ) = J I Г(а)|м</а-.- 2 2 I 1 ^ 

4« Оценка интеграла, распространенного по Е 

Л е м м а 7.9. Для 

2*>£ 3 (1о£&ч-2 .21о г 1ог£) — 4, £ > 1 4 , 
имеем 

\\T{v)\2tdoL<^P™-\ 
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Возьмем 

Тогда 

(1—p) (2*-6n) -4- in—ft+-i- * (fr—1) a+e 

Гь*(1*(*-|-1)1о**? ) 

*Iog(-5-t(tH-l)lojr») 
n < j i - K 

< (l — j a ) k log (£ 2 log &) ч - 1 < & log (£ 2 log £) — log к ч-1 < 

<k\*g{P\agk) — \i 

in < у (Л ч - 1) (А ч - 2) £log (P log £) — 4 = 

ч - 1 ( 1 ч - 3 а ч - 2 а 2 ) ) ) — 4 . 

Так как при &^>14 

_ J ^ i _ (Se _н 2 a * ) H - I (1ч- 3a H - 2a 2) < 

< 0.612 ч-0.613 < 1.23, 
то 

Ä n < ^ l o g A ( l H - 1 . 2 3 , - ^ ) - 4 . 

Далее, 
_ p ( 2 f _ e n ) + _ _ ^ e < 

^ о (log к 2.2 log log fc) — (log £ -4-1.23 log log k) 1 
^ log * » - ь 2.2 log log к* " +~21og& 
_ 1 / 1.94 log log & \ 0Л1 
~ 21og£U-b2.21ogIogF/logfc2 *-)<< 2loxk ' 

Получаем таким образом нашу лемму. 

Д о к а з а т е л ь с т в о , По теоремам 8 и 9, 

J I 7"(a)f d*<£ J I 7-(a) | f a dbt^ 



Число решений в проблеме Варинга-Гольдбаха 91 

5. Леммы, относящиеся к %Jl(h,q) 

Пусть 
р 

r*(a,Ä,?) = 9 - 1 ^ , s je(f(g)fidff, 
О 

где 
1 

Sh,q=^>j eq (Ä/fa)). Я = Я (Я, fi, 

a d—наименьший общий знаменатель коэффициентов / (* ) . 
Л е м м а 7.10. 

T* (a, h,q) — 0 (q-a+* min (P, | ß | - ) ) . 

Д о к а з а т е л ь с т в о . Так как, по теореме 1 (следствие 1.2), 

Р 
и J e ( ß / ( ^ ) ) — 0{Р)9 то достаточно доказать, что при | ß | " " a ^ / > 

о 

р 

Je (ß / fo) )^=0( |ß | - e ) . 
о 

Существует такое с, что 

f(y-+-c) = g(y) 

«есть многочлен относительно у с положительными коэффициентами, тогда 

Р Р—с 

f f e(ß*(y))#. 
с 0 

Рассмотрим w = \$\g(y). Тогда у есть возрастающая функция от w. 
Пусть w0—\$\g(P—с). Тогда, по второй теореме о среднем значении, 

Л е м м а 7.11. Пусть a = y - b ß . Если q^P1'* и | ß | < q ' 1 , 

то 
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Д о к а з а т е л ь с т в о . Имеем 

р 

Г(а)=2«(/(х)«) = 
ж=0 

= 2 2«(7ЯФ<е/юН 
»=1 0 f̂<P 

(Y) 

где 
г==1 

А е = 2 e (ß/(9/-»-^))= 2 Ф(-^|) 

*(*) = e(ß/(?*)). 

По эйлеровой формуле суммирования, имеем 

p/î *-i 

^ J » W U + 2 ( Ф « ( 4 ) ^ ( | - | ) - Ф » ( Р ) 4 ^ ( 4 ) ) -

о 

Так как 
p/ï Р / Г Р 

f Ф ( * ) Л г = J e(ß/(^)^=| f eW(g))ék,, 

ТО 

где 

г—1 

Г ( « ) = Г ( а Л ? ) + 2 (фМ(т) ^-w(-Ç)-^r)(0)a,-+1(0))-R, 

Ä=2#W) {ф«(*)й,(4-*)<&. 
0=1 0 
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Возьмем теперь £ = [ ^ - J - i - l , тогда, по лемме 7.8, 

R = o(^q J /«<&j = 0(l). 
Пусть 

v 

Тогда 

« V « (0 = *г К+1 [ \ - * ) н- 2 ( s - V-O br+1 (4 - f ) = 

m = l 

По теореме 2, имеем 
^==0(4-!-^). 

Тогда 

\ m = l / 

так как br+i(x) — функция с ограниченной вариацией. Поэтому, в силу 
леммы 7.8, 

Т(*)- Г * ( а , А , г К ^ 2 P^-*-l}j~**< 

6. Оценка интеграла, распространенного по 2)с (A, q) 

Л е м м а 7.12. При 2 * > 2 & - t - l имеем 

2f|rwr&=o(pJW). 
3ft 27t 

Д о к а з а т е л ь с т в о . В силу леммы 7.10 и 7.11, имеем на 931 (h,q) 

Г (а) = О (q-*** min (P, I ß |-°) -I- О fa1-"-*"') = 

= О fa"0*8 min (P, [ ß |-")). 
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Рассматриваемая в лемме сумма не превосходит 

< 2 J Я-Ш+ггтп{РиМ-Ш)а^ 
Ж SR 

^ 2 2У*н J/,-dp4"lß_ae* И \ о Р~* 

так как ^ «у1—2** сходится. 

Л е м м а 7.13. Если £ ^ 1 4 и 

2* > Jè (loo; jfe -ь 2.2 loo; log £) — 4, 

то 

/ 2 4 ( / > ) = о ( / > 2 ' - 1 ) . 

Д о к а з а т е л ь с т в о . См. леммы 7.9 и 7.12. 

7. Леммы, необходимые для доказательства теоремы 

Пусть N=f(P)9 

S ( а ) = 2 *(/(/>)*), 

1 Wh,q X ? eW*> 
ti-alog"jz 7 

2 < n<C / ( j , ) 

где А — старший коэффициент /(х), a Wb определено в начале этой 
главы. 

Разделим интервал — ^ а ̂ 1 — так же, как это делалось в п. 3 

с q^T = NL~°J где <г выбрано так, чтобы <т0 в теореме 10 была бы 
больше, чем постоянное c.z(k,k) в теореме 4 плюс некоторое целое 

Пусть 3R(A, q) означает интервал 

А 
ос 

я 

q^If. Пусть Е означает часть ^ — 1 — - i ^ , остающуюся после 
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исключения 2У£(А, <у). Легко доказать, как и выше, что никакие два 
ffî(h,q) не перекрываются. 

Л е м м а 7.14 (Siegel—Walfisz).1 Если q ̂  U% (/, q) = 1, п ̂  Pf то число 
простых чисел в арифметической прогрессии l-t-qx есть 

* (п; U ) = ^ И/г-н О (Ре"'1 ^Г ) , 

X 

где Ндг= j ^о*х ? а постоянное в символе О не зависит от q. 
2 

Л е м м а 7.15. На 2JI (A, g) мы имеем 

S (а ) — 2 * (а, h,q)=0 [Ре~* ^ ). 

Д о к а з а т е л ь с т в о . Пишем а = -н ß. Пусть 

Тогда 

1=1 
(*,*) = 1 

где л' — наибольший положительный корень уравнения f(x) = n (так как 
п достаточно велико, то п! существует и единственно). 
Тогда имеем 

В самом деле, 

п>- ( J ) W - ( ^ ) W - ( n * - . - О^- 1 ))" = 

= п ' ( 1 - ( 1 + 0( п ' - 1 ) )") = 0(1) . 

По теореме Siegel-Walfisz, для достаточно большого п имеем 

* ( » ' ! / , » > = И »' + О ( f t - ff ) = 

1 Math. Zs., 40 (1936), 592—601. Hilfsatz 3 
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Последнее равенство справедливо при всех п'^Р. Следовательно, 

1 «,<w))(Tk l i&)Vo(^'' rF0<'")= Ля) 

1=1 

Поэтому 
Л7 

«(а )= 2 ( ^ M - ^ _ 1 ) e ( n ß ) ~ . - 0 ( l ) = 
м = 2 

= 2 4 (е (nß) - e ((л - 1 ) ß ) ) - SNe ((ЛГч-1) ß) -н О (1) = 
п=2 

9 ( 9 ) 
n=2 

• 0 ( f l r ^ ) , 

откуда следует требуемый результат, так как 

(n/1)* 

logx 
((*-i)MY» 

~ ^ I bg (Д-*) ~~~ Ла log n 0 ( n2"^ log л ) 

Лемма 7.16. Если | ß | ^ - j ? то 

£* (a, h,q)—0(q-*+* min (P, | ß Г*)). 

Аналогичный результат имеет место для 2(a) на 2)1 (A, q). 
Д о к а з а т е л ь с т в о . Согласно следствию 1.3 из теоремы 1, имеем 
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так как Ф (q) ̂  ^ Далее, 

2 е(дЦ , _ e(nß) 

л 1 " 0 log л n ^ l o g n «3*1 er 2 . ; 
e(nß) 

,1—a 
n>|ß|-i 

log Л 

Суммы справа обозначим соответственно через ^ п и 

Очевидно, 

2 г | < 2 = 0 ( | Р Г ) . 
.мЛ I Л

А « loa. Л 

Далее, суммируя по частям, получаем 

2 1 V _ ^ S n —>$п-1 I ' log 
n>|ß|" 

<

n > 2_ i

l ^ , ( n^bgn ( ^ l ) ^ b g ( n ^ l ) ) 

где Sn— 2 e(mß). Так как I * S J < ^ - ~ - J то 

12* I < e>2_ i T ( „ х - Д * » ~ ~ (n -.- D^b , ( „ -ь 1) ) < 1 ß 

В силу леммы 7.15, 

£ (a) = Z* (a, h,q)-*-0 (Pe* ^ ). 

Так как Pe~^T^P, P e ^ ^ l ß P , то 

2 ( a ) = 0 ( < 7 - a + 6 m i n ( P | ß r ) ) . 

8. Доказательство теоремы 

Мы установим несколько видоизмененную теорему. 
Т е о р е м а 11. Если 

j 2*ч-1 при 1 < & < 1 4 , 
[(bgÄ:^2.21oo;loo;^) при 1 4 < £ , 

то, для любого заданного целого числа sl9 

I j /дл jç-sa ~ ( Д П г р (ДЛ[< С ^ ' *ч ' ̂ оэФФДЗ̂ е̂ тът f{x)) Nsa~~X 

1 Л } ^ \ J \ ( log/V/ 1 7 

7 Труды Математ. ин-та, т. X X I I 
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1 - i 

Д о к а з а т е л ь с т в о . 1) Имеем 

/ # ( Л 0 = )"Г(а)е(— №)d*= f Г(<х)е(— Nx)doL = 
О _ _1_ 

т 

= | Г ( а ) е ( — № ) d o L + 2 J Г (а) e(—ЛЬ) Же. 

* 3 R ( M ) g » A Ö 

2) Пусть 14. Так как s > £ 3 (loo; £ -t- 2.2 lop; log; k), то можно выбрать 
такое целое число /, что 

S — 2 * > 1 , 2f>P(loo;vtH-2.21op;log>t)—4. 

В силу теоремы 10 и леммы 7.13, имеем 
1 

J 2 ' (a) е (—ЛЬ) Ja < ( ДЕТ*) -* \ | 2 (а) f Ja <^ 
jr о 

1 

о 

При 1<^&<;14 имеем, по теореме 4, 

1 
j" (S:(ct)f-- 1e(-iVa)rf a<PL-"-' ! ' ( l** ) f | 7*(a)f*<fo< 
Я 0 

(ср. выбор <т). 
3) В силу лемм 7Д5, 7.16 и простого неравенства 

i r -V | < s |S -* ! |ma X ( |Sr \ Ы~\ 

имеем на 2J£(A, q)z 

I ( a ) _ г * * ( й > А, 7 ) | < I г (a) - г* (а, А, | max ( j 2 (а) \ ' ~ \ 

! Î* (а, A, q)Г"1) ^ Я Г * « V T l „ ï „ (P, | ß 

где 
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< ^ ^ — 1 + £ ps—1 £—Q(sa~l) 

Поэтому 

2 f З Г ( а , А , 9 ) в ( - Л Г а ) Л с ~ 2 f Г ( а , А , ? ) е ( - № ) ^ < 

sot шг SÄ ° 

^так как 2 % 0 И sa— 

Интегрируя по множеству 2R(A, q), получаем 

j* Г(ос)е(— №)dx— j $*8 (*9k,q)e(—N«)dx<£ 

\ 0 p-» / 

Суммируя по всем ïïll(h,q), получаем 

2 f Г ( а ) е ( - М ) < / а - 2 f ar(«.A .9)e(-Afc)«fa« 

4) В силу леммы 7.16 имеем 

î 

J 2 Г (к, A, ?) e (— Me) dbc — J 2 Г (oc, A, a) e (— Afc) </ß < 
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5) Имеем 
î 

2К 0 

_ г а Ä = l 

где W(TV) определено, как в теореме 11' 
6) Имеем 

_сг Л=1 

< ^ L ( 2 - " , ) < M " * < Z Г * , . 

Поэтому 

( Ä , ? ) = 1 

7) В силу результатов пунктов 3), 4), 5) и 6), имеем 

= S (TV) A~*a W (TV) - ь ОСЛТ"1 L-*\ 

а в силу пунктов 1) и 2), 

/ , (TV) = © (TV) Л"*а W (TV) - н О (TV**-1 L~Sl ). 

9« Окончание доказательства теоремы 11 

Лемма 7.17. При 0 < O ; L < 1 И имеем 
N-1 

2 „.-,(;_„).-, - г П ^ ^ » ^ 
Д о к а з а т е л ь с т в о . Пишем 
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Для д г ^ ^ ^ ? полагая * = ^ - ь - ^ - ( О < ^ 0 «О), имеем 

1 1 

= 7^рГГ^Т1=хг( 1 — (1-+-7г) ( 1 — л ^ ) ) s = 

Поэтому 

2 „^.(Jv'-„)-v ) 

и (Л/—и) 

& (£) / (ж) '* 

( Д—1 

Так как 
—1 

^ 1 ^ 1 
я 2"*' ( Л / - n ) 1 " ^ л

2 - х 1 (N-n)1"^ 

n=l . JIT 

.»>п> — 

^ i , , 1 1 , если \ ф 1 

^ „ ^ ( Л Г - п ) ^ j l Q g N } е с д и ^ = 1> 

то получаем нашу лемму. 

и 
Л г-1 
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Л е м м а 7.18. 

Д о к а з а т е л ь с т в о . Лемма верна для s = 2 в силу леммы 7.17. 
Предположим, что лемма верна для 5 — 1. Тогда, в силу леммы 7.17, 

<£mi „1—<• „ 1 - е „ 1 - е X I 1—а 1 - е 

я » > 0 

в V 1 г 8" 1^ /л/ „ V -

„ 1 - Г ( ( с * - 1 ) а ) ( ^ " ~ Л 1 > - Г ^ - п ) 1 - ^ 0 - " 

Л е м м а 7.19. 

V I Г » Л Г — * Л , p flog M у 
n r i o ? n 3 - . ^ - a I o ? n . Г ( .« ) L» l " I i i / 

t»,>l 
Д о к а з а т е л ь с т в о . Пусть 

Тогда 
n v > l 

*,w4w.,(«+o(^)+o(^). (i) 
В самом деле, если мы разобьем 

члю=- 2 ^ 2 = ^ 1 - * - ^ , 

TO 

< 2 ^-(^-^)(*-1)0-1^ 



Число решений в проблеме Варинга-Гольдбаха 

где положено ?> = £(s-t-l); далее, 

с = J _ V 1 
2 L х 1 « „ „1—л 1 „ 1—а 1—а 

i / _ 2 L _ W 

В силу (1), имеем 

Z. V ) \ L' 

тогда 

и лемма следует из леммы 7.8. 
Теорема 11 вытекает из леммы 7.19 и теоремы 11'. 



ГЛАВА VIII 

Особые ряды 

1 . 

Сейчас мы будем изучать особый ряд для частного случая f(x) = 
Пусть рЦ\к и 

_ f 9 - ь 2 при/? = 2, 21k, 
Ч \ 0 4 - 1 в других случаях, 

к- П >' 
Т е о р е м а 12. Если s ^ 3 £ - + - l и s == N(moàру) при всяком 

удовлетворяющем условию (p — l)\k, то для / (х ) = л:* 
< S ( J V ) ^ - 4 > 0 (Л не зависит от N). 

2. Леммы о тригонометрических суммах 

Л е м м а 8.1. Если (<71><72)
 = 1> т о 

r ^ - l , g f i

 WM\~\h 

Bs (N, ft ДО <7i) B9 (N, q2). 

Д о к а з а т е л ь с т в о . Пусть 1=11Ч2~^^Ях> тогда 

г,=1 z2=i 

Пусть, далее, h = h1q24-h2q1; имеем 
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7*,=1 Й 2 = 1 

Л е м м а 8.2. Если 

x = y -+- z/^ (mod p ^ " 1 " 1 ) ? 

где 
при p > 2, 
при p = 2, 

то 

Д о к а з а т е л ь с т в о . Имеем 

Тогда 

= У-+-У zp ~+-^(p — l)py zp (modp^ ), 

так как Зр. 2. Для p > 2 имеем 

| p ( p - l ) / + 1

Z

2 / ^ 0 ( m o d ^ 2 ) . 

Для p = 2, так как p-^2 , 2^^jx- t -2 , имеем 

•§7» 0» - 1 ) / - * * » р * « 0 (mod Л 

и лемма тем самым доказана. 
Л е м м а 8.3. Если tf>Y и т 0 

Д о к а з а т е л ь с т в о . Пусть 1=11-+-12р*~^~~\ тогда повторным при­
менением леммы 8,2 получим; 

Тогда 
/ ^ / f ^ - V ^ C m o d A 
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Следовательно. 

. , = 1 г2=1 

так как рХ1гкр 
Л е м м а 8.4. Сравнение 

Xе = a (modр), рХа, 

либо не имеет решений, либо имеет (k, р — 1) решений. Когда х пробегает 

значения 1,2,...,/>— l(mod/>), х* принимает ^ р ^ } - ^ различных по мо­

дулю р значений. 
Д о к а з а т е л ь с т в о . Сравнение x * s l ( m o d / 0 имеет (р—19к) 

решений, так как дг1"" = 1 (mod р). Пусть 
a i f • -> a(*,j»~i) 

суть эти решения. Если л: /= a (mod/?), то 

суть также решения сравнения л:* = a (mod р) и наоборот. Итак, сравнение 

х = а (mod р)у рХа 

либо не имеет решения, либо имеет (k9 р — 1) решений. Мы получаем, 
таким образом, нашу лемму. 

Лемма 8.5. При (А, <у)=1 имеем 

Д о к а з а т е л ь с т в о . 1) q взаимно просто с р. Тогда, в силу леммы 8.4, 

т 2 2еДА**) = I 2 1 * - ^ - 1 ) + 1 -
Ä = l х=1 я*~Ук,(р) 

Далее, рассмотрим суммы 

2 2 e ^ A (^)=2 e p ( A x i : c k ) » * = 1 . - - - » р - 1 -
as=l 

Так как л* принимает различных по модулю р, значений, то 

Р - 1 
2 < 2 2 е я ^ > 

Л=1 а = 1 

< 
—1)0» — I ) - * - ! ) / » -
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Поэтому 

т. е. 
| B ^ , | < 2 * V 7 

Н ^ = 0 ( 1 ) при/>|*. 
2) Имеем 

В силу леммы 8.3, 

Whpt = 0(l) при и * > у = 6 ч - 1 = 1. 

Имеем, по пункту 1) : 

I Whf р I < 2к \)р для всех />, 

<ъ.Р Для всех р^к . 

Пусть q — pl.. и p1

<Cp2<i. - • тогда, в силу леммы 8.1, 

- О ( , * " ) . 

3« Леммы о сравнениях 

Л е м м а 8.6. Пусть Ма(р*9Ы) — число решений сравнения 

дг^-ь . . . +x* = N(mo&p\ рХхг • . . 0 < л г 7 < / Л 

Тогда 

f ; ( p ' ) - V ' M s ( p ' , J V ) = n - 2 

Д о к а з а т е л ь с т в о . Имеем 

мм*о=р-* 2 • • • 2 2 VM*-*- • • • - к ' - = 
z,=i ze=i л=1 

pXh pXh 

= ^ 2 *с^(-^>= 
Л=1 

=#̂ *W 1 + 2 
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Лемма 8.7 (I. Chowla и Davenport). Пусть x19...txm принадлежат 
m различным классам вычетов по модулю р\ а у19-..9уп принадлежат 
п различным классам вычетов по модулю р и никакие два у не сравнимы 
друг с другом по модулю р. Тогда число различных классов вычетов,, 
представляемых числами х 4 у А ( l ^ z ^ m , 1<^/< JTÎ ) , больше или равна 
min (m Hh-n — 1, pl)m 

Д о к а з а т е л ь с т в о . Применим индукцию по п. Лемма очевидна 
при 7 i = l , так как х4-¥-ух (l<Jz<^m) принадлежат m различным классам 
вычетов. 

Пусть z19...,zt— представители всех различных классов вычетов 
по модулю р вида xi-h-yJ. Без ограничения общности мы можем считать,, 
что t<Cpl. Х9 Y9Z будут означать, соответственно, множества х19...9хт9\, 

Ун» ">Уп> z i > • zv 
Так как при т г ^ 2 мы вправе предположить, что рХу9 то не все 

z-\-y1 принадлежат Z9 потому что иначе z-f-Xz^ при всех л принадлежало 
бы Z9 и t равнялось бы /Л Поэтому существует такое целое / , что 
/—у принадлежит Z9 а / не принадлежит Z . Занумеруем все у и z 
таким образом, чтобы иметь при некотором г (1 ̂  г ̂  тг) 

/ не принадлежит Z9 

f—ys~za при l < s < r , 

/—yar не принадлежат Z при r < $ f < ^ n 

(при г = п последнего множества не существует). 
При l < ^ s ^ r < s ' ^ n zs—ys, не принадлежат X, так как в противном 

случае / — y s f == / -+-х—z s = x~h-ys принадлежала бы Z. При K ^ s ^ r 
zs не принадлежит Х9 так как в противном случае, f—x-*-y принадле­
жало бы Z. 

Рассмотрим теперь множество Z\ состоящее из различных классов 
вычетов вида ( 1 < л < т п , г < / ^ л ) . ZJ есть подмножество 
множества Z. Так как zx,..., zT принадлежат Z9 но не принадлежат Z'„ 
то * ' < * — г. 

По предположению индукции, £^т-+-{п — г) и поэтому 

0 * ' - Ь г ^ > 7 7 1 " Ь Я - 1. 

Л е м м а 8.8. При s > 3 £ - t - ï и (р — 1)Хк 

M9(p\N)>0. 

Д о к а з а т е л ь с т в о . Очевидно, что / > > 2 . 
1) у = 1. Так как (p — 1)Хк9 то, согласно лемме 8.4, хь 

принимает 
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различных по модулю р значений, когда х пробегает 1 ,2 , . . . , р—1 (mod р). 
По лемме 8.7, х^-ь ••• н-дс/ {р1хг..шХа) принимает 

min (бГ-ь (d — 1) (s — 1), p) = p 

различных по модулю р значений, так как 

5 > 2 * > ^ > Й ' 
Т 

Отсюда 
d + (d—l)(s — l) = (d—l)s + l>p. 

2) Пусть k—p^kç, pikQm Тогда принимает, по меньшей мере, 

; р "T \ v ( > 1) различных значений, никакие два из которых не сравнимы 
\р — 1» fco) 
по модулю р, так как 

j / * ° = x*°(modp) и (р — l)tko. 

Следовательно, х ^ н - . . . н - х / принимает 

различных, по модулю /?, значений, так как 

s - 2 > 3 £ - i > - ^ - i > . ; т . — 1 > /V1 

2 №>,/>-!) (*о,Р-1) 

Л е м м а 8.9 Если s = N(modpr)f то 

М . 0 > т , Л 0 > 0 . 

Д о к а з а т е л ь с т в о очевидно. 

4. Положительность особого ряда 

Л е м м а 8.10. Особый ряд (&(N) абсолютно сходится при s > 4 , 
а также при s > 2 и £ = 1 . 

Д о к а з а т е л ь с т в о . В силу леммы 8.5, имеем 

*=1 q = l 

Если £ = 1 , то tPft, g =[*•(?) (функция Мебиуса). Так как I ^ O f J I ^ l i то 

00 со 
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Л е м м а 8.11. При s > 4 имеем 

р 

где 
т 

То же справедливо при s > 2 и к=1. 
Д о к а з а т е л ь с т в о . Лемма получается непосредственно из лемм 

8Д, 8.3 и 8.10. 
Д о к а з а т е л ь с т в о т е о р е м ы . В силу лемм 8.6, 8.8 и 8.9, 

Xp(N)>0 для всех р. 
Имеем 

\ВЛК,Р)\<Р&^<№Р 

Поэтому при pX4k)i9 

Следовательно, для s > 4 

1 , х 

Х о > 1 — Р 

<&{N)> TT Ъ П *)>А>0. 

То же верно при Лс=1, s > 2 . 

5» Следствия из теорем 11 и 12 

Легко выводим следующую теорему. 
Всякое достаточно большое целое число 7V=s (mod£) есть сумма 

5 &-ых степеней простых чисел, если s ^ s 0 > где 

^ ( 2*-Ы при 1 < * < 1 4 , ( T ч-1 

41°g£-b2-21oglog&) при £ > 1 4 . 

Чтобы сделать этот результат более конкретным, приведем следующие 
непосредственные следствия: 

С л е д с т в и е 1. Всякое большое нечетное целое число есть сумма 
трех простых. 

С л е д с т в и е 2. Всякое большое целое число = 5 (mod 24) есть сумма 
пяти квадратов простых чисел. 

С л е д с т в и е 3. Всякое большое нечетное целое число есть сумма 
девяти кубов простых чисел. 
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С л е д с т в и е 4. Всякое большое целое число = 17(mod240) есть 
сумма семнадцати четвертых степеней простых чисел. 

В заключение главы введем следующее обозначение. Пусть Н(к) 
обозначает наименьшее целое число такое, что всякое достаточно 
большое целое число N==s(modK) есть сумма 5 £-ых степеней простых 
чисел. Тогда полученный выше результат может быть сформулирован 
так: 

2*ч-1 п р и & < 1 4 , 
н ( к Х \ £ 3 ( 1 о г £ ч - 2 . 2 1 о г Ь г £ ) при к > 1 4 . 
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Дальнейшее рассмотрение проблемы Варинга-Гольдбаха 

1. 

Цель этой главы — улучшить результат п. 5 главы VIII. Именно: 

пусть к— целое число ̂ 4 , а = -^-» 

F (log jfc-bl.llojjlojjife2) при к ^>14, 
при & < 1 4 

7 П = 

j o g r i _ ( 1 — 2а) 

— 1о*(1 —а) 

Т е о р е м а 13. Всякое достаточно большое (т. е. ^>с(£)) целое 
число iV=$(mod&) есть сумма s &-ых степеней простых чисел, если 
s ^ s 0 , где s0 = s0(&) = 2£-t-2m-b7. Иначе, 

# ( £ ) < 2 & ч ~ 2 т п ч - 7 . 
Для больших £ 

Зк log it 
и 

s 0 ~ 6к log кт 

Этот результат для к^5 лучше результата, полученного в п. 5 преды­
дущей главы. В дальнейшей части этой главы мы еще улучшим этот 
результат для £ = 4 , 5, 6 и 7, именно, мы покажем, что 

# ( 4 ) < 1 5 , Я ( 5 ) < 2 5 , # ( 6 ) < 3 9 , # ( 7 ) < 5 5 . 

2. Лемма, относящаяся к проблеме Варинга 

Пусть N—большое число и P=^Na» 
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Г , . ( а ) = Г ( а , 2-'Я 1"»)'), г - ь О , . . . , m-i-1, 

Q(a)=r i (« ) . . .T m (a )7 i H l (a ) = 

Я 

/ ? . = 7-0(a)Q(a) = 

n 

Г 0 ' ( Ж ) Л ( а ) = 2 г в + к + 3 ( П ) е И . 

Тогда имеем, очевидно, 

Основная лемма этого пункта: 

1 

n о 

-Лемма 9.1. Имеем 

2 J ! * ( a ) | 2 ^ = O(PQ(0)Le'). 
» о 

Д о к а з а т е л ь с т в о . /"^^(я) есть число решений уравнения 
п 

4
 4— -+-xl+x'Li = si-* »-$•-*- , (!) 

тде 

И з (1) следует, что х(—д( для / = 0 , 1, m, когда Р достаточно 
велико, потому что, если v первый из тех индексов, для которых 
Л Ь ^ ! » то 

\xv

l-9*\>HPï-°V2-«T-\ 

Правая часть последнего неравенства больше, чем 

тсогда Р достаточно велико. По теореме 4, число решений уравнения 

есть О (P 2* 1-)""'//*). Лемма доказана. 

& Трудм Математ. ин-та, т. X X I I 
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Разбиваем интервал ~ ^ о с < Л ~- так же, как это делалось 

в п. 3 главы VII; 3DÎ (A, q) и Е пусть означают то же, что и в п. 3 
главы VII. 

Л е м м а 9.2 

J I Г 0 * ( а ) Я ( а ) Р < / а = 0(Р*+2 Q 2 (о)). 
Е 

Д о к а з а т е л ь с т в о . Так как, по теореме 9, 

Г 0 ( а ) = о ( р ~ Т + 1 
ТО 

J* I Т*{%)ЯЦа)\а*^Р^1"^ J" | # 2 ( о с ) 1 < / о с < 
Е О 

^ р2М1-75)ч4^-м-(*-2Н1-а)т«+е Q2 ̂  ^ 

<^ P*"*"2 Q2 ( 0 ) , 

потому что —г)(1 — а ^ ^ ^ у 

Лемма 9.3. 

2 J I r 0

f t ( a ) Ä ( a ) | 2 r f a = O(P^ 2 Q2 (0)). 

Д о к а з а т е л ь с т в о . В силу леммы 7.12, имеем 

2 J|r0*(*)*(a)P<fo = 2 J |Г.»«(а)| | ( ? ( в с ) | Л < 

Лемма 9.4. 

2 W a ^ K ^ Q ^ o ) . 
л 

Д о к а з а т е л ь с т в о . Леммы 9.2 и 9.3. 

3. Доказательство теоремы 13 

£1 ~ ~ 

Пусть 
Wi 

( а , Р ) = 2 е ( / а ) , V ( « f Ä . c ) = ^ ^ 
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. емма 9.6. 
^ p i + 3 Q 2 ( 0 ) e-c 4 V Î 

2 J I JCf« («. A. 9)| j G» (0) — A» ( - Ĵ -) [ dbt <^ i » « <? е-* л . 

где 

Д о к а з а т е л ь с т в о . Имеем 

I G (a) - CL ( A ) I < 2 С ( « ) I e (na) - e (n%)| < 

< I ß 1 2 nr'^ (nXP^WQ ( o ) < 
n 

Соответствующим образом определяем ït(oc), i = 0 , 1 , . • • , rn9 m - t - l t 

Cl (a) и Л (a). 
Пусть 

И 

2 2 * + 3 (a) a2(a) = 2 W « 0 0 e (na), 
П 

так что /*2m-f-2jn-7 ( n ) e C T b число решений уравнения ft ft 
д Рг -*~ " * ' P 2w+2/H-7 ? 

где /? удовлетворяют определенным условиям. Разбиваем интервал 

L ^ a ^ l — J _ т а к ж е к а к в п. 7 главы VII. 

Л е м м а 9.5. 

2 { ! « Г * (*) -%f** («, h, q)\ Ща)</a<^PM Q 2 (0) e"*^. 
SR Tt 

Д о к а з а т е л ь с т в о . В силу 7.15 и 7.16, имеем на 9№(А, q) 

г Г 3 ( а ) - г ^ + 3 ( « , А, чХ(<Г*Т** шш(Р, |ßrr™A-*V R. 

Поэтому рассматриваемая нами сумма не превосходит 
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Далее, по теореме Siegfei-Walfisz'a 

«(!)= 2 «.<v>= 

1=1 

2-.'+1^(1-а)» 

9(c) J . log* 
2-»p(l-a)* 

Поэтому 

где 

А удовлетворяет, очевидно, неравенству в нашей лемме, так как 
X 

— < £ f d x ^ * 
logx^- J log- д : l o g х * 

2 
Следовательно, 

И«>-ЧтЗГН<И«>-^П<г<°>< 
< Q 2 ( 0 ) e - * » V I . 

В силу леммы 7.16, рассматриваемая сумма не превосходит 

< 2 Ч • Q 2 (0) е- с» ^ 9-2-з«н- / J р**+з rfß -I- J ß-2-3" Jß W 
\ о p-* / 

^ P l + 3 Q 2 ( 0 ) e - * ^ . 

Лемма 9.7. 

» b SR' 

Д о к а з а т е л ь с т в о . Левая часть не превосходит 

<^ 2 Ч • Q 2 (0) 7 - ( 2 т 4 4 > • Ç-(2+3a)+. J ß-2-За ^ 

< P l + 3 Q 2 (0) U~a 0 + * > <g P i + 3 Q 2 (0) L ~ S | , 
так как S j O . 
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Л е м м а 9.8. 

j* I %гм (сс) G 2 (а) Г Ас <^ / > 1 + 3 Q 2 (0) ZT" • 

Д о к а з а т е л ь с т в о . В силу теоремы 10 и леммы 9.4, имеем 

f I S2**3 (oc)D2 (а)| doL^PlT*1 \ I Г 2 * + 2 <а) Q 2 (0) |<& < 
2? 0 

Л е м м а 9.9. 

W = A 2 ( S ДО V (N) -ь О ( P 1 - 3 Q 2 (0) ZT"), 

где Л определена в лемме 9.6 и 

сп Ръ+Ъ L - 2 i - 3 < W (N) < с 1 2 Р1+3 ZT 2 *" 3 . 
Д о к а з а т е л ь с т в о . В силу лемм 9.5, 9.6, 9.7 и 9.8, 

1 

4 + w 7 M = J 3 («) SX2 (а) е ( - Щ da = 
о 

= 2 £ * ( J ^ r — ^ H W W * 
ç^L0" A = l 

(Ä,2)=l 

- ь О ( Р ^ 3 1 - 8 1 С 2 ( 0 ) ) ? 

где 

W ( 7 V ) = ^ - S H - ^ 
m+.-.+n^+^N I I л}~"аlogЩ 

В силу леммы 7.19, W (TV) удовлетворяет неравенству в нашей лемме. 
Лемма следует отсюда, так как 

(A,ff)=l 
(как в главе VII). 

Теорема 13 вытекает из леммы 9.9 и из теоремы 12. 

4» Лемма Девенпорта (Devenport) 

Для небольших К предыдущие результаты могут быть еще улуч­
шены. Ниже автор покажет, что 

# ( 4 ) < 1 5 , # ( 5 ) < 2 5 , # ( 6 ) < 3 7 , # ( 7 ) < 5 5 , # ( 8 ) < 7 5 . 
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В доказательстве этих результатов важную роль будет играть лемма, 
в существенном принадлежащая Девенпорту. 

Лемма 9.10 (Devenport).1 Пусть {М\ — некоторое множество нату­
ральных чиеел (не обязательно различных), удовлетворяющее следующим 
условиям: 

a) в {М\ существуют 5Ш пар одинаковых элементов, т. е. число 
решений уравнения МХ = М2 (М^ \М\, М2£ \М\) равно Щ 

b) число элементов \М\ есть У1 
и 

c) в {М\ всякий элемент ^ Р 3 . 
Пусть f(x) — многочлен с целыми значениями степени к. Тогда число 

решений уравнения 

/(xJ + M^ffä-t-Mi, / > < х , , х 2 < 2 Р , М19 М2е\М\ (1) 

при 1 < ^ г < ^ £ — 2 будет 

< р 1 + е m ( î p ( 1 ^ 0 ( S ^ 1 M f + 1 ) 2 - , ш г 2 - г yf-r^ 

где постоянное, подразумевающееся в <^ зависит только от к и е. 
Д о к а з а т е л ь с т в о . Мы пользуемся обозначением 

**/(*)=/(*-•-о-/(*) 

1) Пусть Nr(r^l) означает число решений уравнения 

t1-'tr^f(x)^M1=:M 

Р < д : < 2Р9 tx - - • *r <4 ti > 0 > (2) 

a r(M9 t) — число решений (2) при фиксированных tlf . . . 9tr и M Имеем 
тогда 

Nr < 5№Ps~*+r и— (2)ÎP s - t + r Nr+Iy. (3) 

В самом деле, согласно неравенству Коши, 

1 1 

Ценным замечанием автор обязан д-ру Rao. 
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2 2 г 2 0 Л ^ t)—число решений уравнения 
t ж 

*i • • • ir A r/(*i) -ь Л£ = *x • • 4 л 7 ( * 2 ) H - M2, ( 4 ) 

подчиненного условию, что обе его части принадлежат \М\. Число 
ix • • • tr Л г / (х2) -+- М, принадлежащих {M\, есть, очевидно, Nr ; таким 
образом, число решений уравнения (4) с хг=х2 есть Nr. Предположим 
теперь, что хг^>х2. Пусть хг = x-*-Xr+if х = х2; тогда 

Ь . - - ^ 7 to н-ЛГ, = М2. (5) 
Так как 

то 

Итак, число решений уравнения (4) с х1>х2 будет <^7V r. Поэтому 

NR <4 {Р*-*+Г 2К ДО •+- NR+1) \ 2 , 
т. е. 

2) При 1 < г < £ — 2 имеем 

Л ^ К Р 8 - * * * - ^ ^ (6) 

Действительно, для г = 1 (6) сводится к (3). Предположим, что (6) верно 
для г — 1 . В силу (3), получаем 

l \ 2 ~ r + l 

3) Пусть N—число решений уравнения (1 ) ; тогда 

N^PTt^Nx. 

В самом деле, уравнение (1) с хх = х2 имеет решений <^Р9№, а при 
xi ^ х2 число решений ^ . 

Лемма вытекает из (6) и из тривиального соотношения 
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З а м е ч а н и е . В дальнейшем мы будем рассматривать такое множе­
ство \М}, для которого ЗЙ<^91Р3, так что утверждение леммы 9.10 
примет вид 

Лемма 9.11. Пусть f(x) — многочлен с целыми значениями четвер­
той степени. Тогда уравнение 

/ ( ^ ) + / ( ^ ) н - / ( ^ ) ^ / Ы + / Ч ^ ) = / Ы - * - / Ы - ь / Ы + / ( л ) - » - / ^ ) 

132 132 108̂  Ш 

P i m ^ x 4 , y i f x t W ^ 2 P i e 7 

имеет <^ Р 2 3 3 4 решений. 

Д о к а з а т е л ь с т в о . 1) Пусть {Л/} — множество целых чисел вида 

5 

Тогда, по теореме 4, 9 Î = P , 2К<^Р и S = - j - . Если мы возьмем 

г = 1, то в силу (7), число решений уравнения 

-+• / (x2)+f(x2') = / & ) - ь / Ы -t- fis,'), 
L JL 

Л < 2 Р , Р* <х„д2,х2',д2'^2Р 6 

n 5 8 

будет < Р 3 'Р3 , так как 

S _ ^ _ _ 1 _ 2 - " - 1 = : Ç _ 4 - H 1 - 1 = ^ - 4 > 0 
И 

( l—^)(а-^-н1) - (г -н1)2- г -ь 2 - г 4-=^- (^-4- + -1 ) -1 -н | = 0. 

2) Пусть — множество целых чисел вида 
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9 л 9 5 24. 

77-+-2— - —"b* ~ Ч-в . 26 В силу 1 ) , имеем 2 ß < P U 1 1 1 6 = P U = ftPe и S = g , 

Если взять г = 2 , то в силу (7 ) , число решений уравнения 

f(Xl)+f(x2)+f{x3) -+-/(*,')=/(?,) 

P < * L Л < 2 Р , P U < * 2 , # 2 < 2 P U 

9_ 5 9 5 

P U ' E < * 3 , Л , *s', Д , ' < 2 Р И ' Т 

, 2 4 л 2 

будет < ^ Р 1 + * 3)1 < ^ Р 1 1 = Р 1 1 , так как 

& _ £ - + - 1 _ 2 - ' + 1 = ^ _ 4 - н 1 - ^ < 0 

( l - ^ ) ( S - ^ + l ) - ( r - i - l ) 2 - H - 2 - ^ = 

_ 3 /36 o l l 2 4 _ п 

3 ) Пусть ^М} — множество целых чисел вида: 

/ ( % ) - b / ( z 2 ) H - / ( Z 3 ) - l - / ( 2 3 ' ) , 

132 132 132 9_ 132 9 
167 ^ ^ OD1Ö7 D167 ' 11 ̂  / o D ^ * 1 1 

Р™ < Г 1 < 2 Р 1 В / , P w 1 1 < < 2 Р 

132 9 5 

В силу 2 ) , имеем 
132 / 0 2 \ 420 

и S — В з я в г = 2 , получим утверждение нашей леммы, так как. 

1 420 587 ^ _5_ 
1 H h " l 6 7 167 2 "' '"ЗЗ^ 

S _ ^ 1 _ 2 - ^ 1 = l l | Z _ 3 - i < 0 

3 /4-132 Л Л 3 , 1 420 л 

Для ясности мы заключим доказательство в таблицу. 
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Число значении f(x) г X Показатель при Р в 

3 1 
5 
6 

4 2 
9 
11 

9 8 2 

132 , 132 / „ 2 \ 7 5 
5 2 167 

, 132 / „ 2 \ 7 5 

Лемма 9.12. Пусть f(x)— многочлен с целыми значениями пятой 
степени. Пусть N—число решений уравнения 

P < * i , Ä < 2 P , 

_ 2 334 984 
I — 2 8 7 3 1 1 1 ' 

^ 238 712 
А 2 ~ 291873 ' 

Р Х Л Х з < л г 4 , ^ < 2 Р л , А 4 А з , Х3 = Х^Л^Хз 24 616 
29 839 

X, Х-2 Хч 
2568 
3077 Xj Х2 х3 

2568 
3077 

v . . 2568 272 2568 272 
/ , A i A s 3077 * 321 ^ „ ^ - 0 р 1 2 ^3Ö77 '321 

2568 S72 15 
/ 1 3 0 7 7 * 32l ' Ï 7 

Тогда 
< х 7 , у 7 , х/, у / < 2 Р 

2568 272 15 
Л , Л 2 * 2 3 0 7 7 ' 8Й 'Ï7 

АГ—П\P* H P + S ) n — 318 447 
N - ° \ P Л Р - 5 7 4 6 2 2 2 

Лемма доказывается следующей таблицей: 

Число значений / ( * ) г Показатель при Р в 

3 2 
15 
17 

47 
17 

8 3 — 9 
у н-рн-е 

П р и м е ч а н и е . Значение у - f - р получается пятикратным повторением рекуррент­

ной формулы 
32т 
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при начальном значении <r = ~ j вычисления легко провести, пользуясь тем, что пре­

дыдущая формула эквивалентна следующей: 

g ' 7 _ 10 <г-ь 7 
с' — 5~ 7 (г — 5 ' 

Л е м м а 9.13. Пусть f(x) — многочлен с целыми значениями шестой 
степени. Тогда существуют ^ , . . . f% такие что уравнение 

13 13 

v=l v=l 

имеет <^/>IXl"l"--*","lXl3"l"e решений, причем fa нь- . . . |л13 > 5.689. 
Лемма доказывается следующей таблицей: 

Число значений /(дг) г X Показатель при Р в 2ÄP 

3 2 
9 

10 
14 

4 3 
195 
224 

55 
16 ~ Н Е 

5 3 
624 
727 

2872 

13 4 — 5.689 

П р и м е ч а н и е . Число 5.689 получается восьмикратным применением рекуррент­
ной формулы 

" / о'-+-15 _32сг -*-15 \ 
: ( т - е* а' —6 ~ 2 5 а — 6 / 

сг' = 1 
80сг 

90-

при начальном значении 
2872 
727 

Л е м м а 9.14. Пусть f(x)—многочлен с целыми значениями седьмой 
степени. Тогда существуют fa, . . . , fas такие, что уравнение 

19 19 

2 / W = 2 / ( * a P14<xt9^<2P^9 l < v < 1 9 

имеет ^р^-*" — " 1 ^ * 4 решений, причем fa-i н J J L 1 ö > 6.767. 
Лемма доказывается таблицей (см. верхнюю таблицу на стр. 124). 
Л е м м а 9.15. Пусть f(x)—многочлен с целыми значениями восьмой 

степени. Тогда существуют ^ , . . . , р - 2 9 такие, что уравнение 
29 29 

2 / W = 2^>' ^ < * v > ^ < 2 P N , l < v < 2 9 , 
v=l 
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Число значений f(x) т Показатель при Р в ШР 

3 2 
21 
23 

65 

4 3 
529 
596 

2091 
596 ^ 6 

5 3 
27 416 
31 295 

127 481 
31295 ' 6 

6 4 
3 973 025 
3 413 456 

15 524151 
3 413456 ' £ 

7 4 
324278320 
373 937 071 

1 848 731 376 
373 937 031 Н ~ е 

19 5 — 6.767 

П р и м е ч а н и е . Число 6.767 получается двенадцатикратным применением рекур­
рентной формулы 

, ^ 192(7 / о-'-4-31 112 <гч-31\ 

^ в 1 + — Г ~ ^ = 7 - = 9 3 - - o ^ i y ] 

при начальном значении 

имеет <зС.г 

217-ь<7 у 

1848731376 
373 937 031 

решении, причем fa ч— • 
Лемма доказывается следящей таблицей. 

[ л 2 9 > 7.8887. 

Число вначений f(x) г X Показатель при Р в 33ÎP 

3 2 
12 
13 

37 
13 ^ 

4 3 
689 
765 

2726 
765 - в 

5 4 42 075 
47263 

197193 
47263 1 5 

6 4 
5198 930 
5 868 753 

27 559 983 
5 868 753 1 е 

7 5 1 308 731 914 7 618 886 936 5 1433 010 727 1483010 727 1 £ 

8 5 330711392 121 
375405547232 

259302166 745 
46 925 693 404 1 Е 

9 5 
10464489 629 092 69720761315 192 

5 11896378130937 11896 378130437 1 6 

29 6 — 7.8887 



Проблема Варинга-Гольдбаха 125 

П р и м е ч а н и е . Число 7.8887 получается двадцатикратным применением рекур­
рентной формулы 

448er / <г'-ь63 _ 5 1 2 <т-+-63\ 
[*' е - с-' — 8 ~ 4 4 Г T^s) 504-ног 

69720 761315192 
при начальном значении п 8 % 3 7 8 ш 9 8 7 ' 

З а м е ч а н и е . Для к^>8 соответствует другой метод, которым 
можно получить еще более точные результаты. Поэтому я ограничи­
ваюсь вычислениями до £ = 8 , 

Пусть 

Тогда 

так как 

5. Доказательство неравенства / / ( 4 ) < Л 5 

Г 0 ( а ) = Г (а, Р ) = 2 е№*)> 

Г (а) = 7 ( а , Р 1" 5 7), 

Г ' ( « ) = г ( а , Р 1 " ) , 

Г"(<х)=7*(а, 

Q ( а ) = Г ' ( а ) Г ' ( а ) Г " 2 ( а ) , 

Я (а) =7*0(^(2 (а). 

132 108 0 90 _ _ ^ 5 
1(ЛЧг~ W~*~* '1б7~ 2 884' 

Разобьем интервал ^-<<х<11 \- так же, как это делалось 

в п. 3 главы VII. 
Л е м м а 9.16. 

s 

Д о к а з а т е л ь с т в о . В силу лемм 9.11 и 3.6, имеем 

1 . 4 + е 1 

J" I r 0

2 ( a ) # ( > ) | 2 < f o ^ P 8 J |#(a)p<fa<^ 
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Л е м м а 9,17. 

2 J\T04*)R(x)\*dx<£Q*(0)P*. 

Д о к а з а т е л ь с т в о . Разобьем интервалы Tt(h, q) на два класса: 
9_ 

9_ 

3R2: Р 1 4 < < 7 < Р 1 + \ 

В силу лемм 7.10 и 7.11, на Tt2 

Г „ ( « ) = О ( , Т * ' ) - н О т ~ * > ) = 

= О ( / * - ) + О ( У - ^ ^ ' ) = 

Поэтому имеем, как в лемме 9 . 1 5 , 
7 1 

2 f | r 0

A ( a ) A ( a ) | « A t ^ / > e + | | Я ( а ) | 2 < / а < 

< Q 2 ( 0 ) P 2 3 r f + e . 

Далее на 2^ имеем, в силу лемм 7.10 и 7.11, 

Тй(а) = o [ q ~ T + ' ) + o { q ~ T * ' min (/>, | ß f Т ) ) = 

= o(<rT+tminU |ß|~)), 
_ _̂ 132 

_1_ 108 
Тогда 

10 132 108 / _ 1_\ 9 
2 J l 7 W 0 ^ ( a ) r > ) | r f a ^ 2 ? . ? *Р™' Pm' |min(,l,!ß| V </ß<^ 
З » ! ^ t SR 

132 108 
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Поэтому 

<^Q 2 (0 )P 2 . 
Л е м м а 9.18. 

J i Г 0

2 (a) R (a) ;

2 c/a < Q 2 (0) P 2 . 
о 

Эта лемма вытекает непосредственно из лемм 9.16 и 9.17. 
Тем же методом, что и в п. 3, мы легко приходим к следующему 

заключению: пусть r15

r(N) — число решений уравнения 

/>14-<-я2

4-| ь-/>35

4=л/; 
где р — простые числа, удовлетворяющие условиям 

132 132 

Р < Л < 2 / > , l < v < 7 , P i e 7 < / W 9 < 2 P 1 6 7 , 
108 108 90_ _90_ 

Р167 ̂  ^ о Г>167 Г>167 ^ ^- ni67 

Тогда 

'и' (ЛГ)=© (Л0 T, (JV) -ь О (Р> (? (0) L-"), 

Отсюда получается 

Теорема 14. Всякое достаточно большое целое число N= 15 (mod 240) 
есть сумма пятнадцати четвертых степеней простых чисел, т. е. 

# ( 4 ) < 1 5 . 
6. Доказательство неравенства H(5) ^ 25 

Тем же методом, что и в п. 5, мы без труда можем вывести сле­
дующий результат: 

Пусть r25

f(N) — число решений уравнения 

ftB + ftB+ • • • -+-p>J = N, 
где 

P < / > V < 2 P , 1 < V < 1 1 , 

D M ^ ^oph \ — 2 334984 
r ^ P i 2 > P i 3 ^ z r y Ai— 2 873111 ' 

P x * > 2 « ^ n n < ^ 9 P X l A e л — 2 3 8 7 1 2 , 
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phh^^ _ n ^>0phh\ г _ 2 4 6 1 6 
^ ^PiQiPn^*' 9 л з — 29839 

->lXiX3.3Ü77 ^ ^ on 1 2 * 3077 
9 

Тогда 

где 

. 2568 272 2568 272 
МА^Хз — . — ^ O D 3077 ' 32Ï 

. 2568 272 15 25б8 272 15 
P W 3 3077 * 3 2 Î ' Ï 7 ^ n n n ^>0p

XlM4m ' 8 8 1 ' 17 

V (N) = 6 (Л0 W2(7V) ( l H- О (-1-)), 

. . , . . . . . , , 2568 , , . 2568 272 2568 272 15 

w 2 ( ^ 5 P -s 

Поэтому имеем: 
Т е о р е м а 15. Всякое большое нечетное целое число есть сумма 

двадцати пяти пятых степеней простых чисел, т. е. / / ( 5 ) ^ 2 5 . 
Чтобы не повторять тех же рассуждений, доказательства неравенств 

# ( 6 ) < 3 7 , # ( 7 ) < 5 5 и # ( 8 ) < 7 5 опускаются. 



ГЛАВА X 

Системы диофантовых уравнений с простыми неизвестными1 

1 . 

Предметом этой и следующей главы является рассмотрение системы 
диофантовых уравнений: 

Pi 4 *-Ps = Ni* 

где p — простые числа. В этой главе будет дана асимптотическая фор­
мула для числа решений этой системы при s ^ s 0 , где $ 0 задается сле­
дующей табличкой: 

к 2 3 4 5 6 7 8 9 10 11 

*0 7 19 49 127 315 763 1781 4071 9193 4.14Ä ( * + • ! ) ( * - • - 2 ) 1о£& 

2. Леммы, необходимые для доказательства теоремы 16 

Л е м м а 10.1. 2 Пусть 

1 

/ = f e(<?(x))dx9 9 (x ) = Yft**-< *-Чгх, 
о 

где yÄ, . . . , уа — вещественные числа. Тогда 

I^Z, Z = ( m a X ( l , | T l | , . . . , IT*!))—-

1 По вопрооам, излагаемым в главах X и XI, см. также статью К. К. М а р д ж а н и ­
ш в и л и „Об одной задаче аддитивной теории чисел". H S B * АН СССР» Серия матема­
тическая, т. 4 (1940), стр. 193—194. Прим. ред. 

2 И. М. В и н о г р а д о в * Математический сборник, 3 (1933), 435—471. 

9 Труды Математ. ин-та, т. X X I I 
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Д о к а з а т е л ь с т в о . Мы можем разделить интервал (0.1) на конеч­
ное число ( < & 2 ) частей, в каждой из которых функции ?(лг) и <р'(лг) 
монотонны. Пусть *i<^*<^*2 такой подинтервал. Пусть 

«а 

Пусть v^yfa), v2 = <p(x2). Тогда 

dv 
9'ix) ' 

где <?f(x) рассматривается как функция от v. 
Предположим, что <pf (х) есть возрастающая функция от v в интервале 

(vit v2); тогда 

м+1 
f sin 2%v \ = f sin 2%v -+- f sin 2TCV -+-... 

Правая часть представляет собой знакочередующийся ряд, а абсолют­
ные величины членов ряда образуют убывающую последовательность. 
Поэтому 

7<^max f d v , | ° | < 1 . 

Аналогичный результат имеет место для убывающей с;(лг). 
Далее, 

W(H-er) 

7<̂ max J d x = max j W -+- <j) — W (v*)\, 

где X = W ( Ï / ) — функция, обратная к v = <p(x). 

Обозначим x0 = tP(v)9 x! = V (v~^a). Задача теперь свелась к оценке 

при 0 < * 0 - У < 1 и |ф(*9 —ф(*а)1= Н < 1 . 

Выберем 

г = а(л:' — д с 0 ) , а = - р 5 

и д / ( х ) = / ( * ч - * ) — / ( * ) , A w + 1 / ( x ) = A A w / ( x ) . Пусть 

Г=Д'ф(*) . 
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Тогда 

-+- , 

Пусть j~ï обозначает верхнюю границу коэффициентов А. Предполо­

жим, что 

1тя1>2(1т*|-ь---н-|у.+1|)с 

(для s=k такого неравенства не нужно). Тогда 

С другой стороны, 

Имеем тогда 

т. е. при |Y*1>1, 

Поэтому 
f^(max( l , | Y i | , . . . , | Y l | ) ) - , 

и лемма получается непосредственно. 
Лемма 10.2. При тех же предположениях, что в лемме 10.1, 

7< m m ( l , Гтг* — YiP2) 
и, при о < 1 , 

ь 

J e ( ? ( x ) ) à < m i n ( l , |yÄ . . . -ft Г*) . 
о 

Д о к а з а т е л ь с т в о . Первое неравенство следует непосредственно 
из леммы 10.1 и неравенства 

min (ак, . .., аг) ^ (ах . . . а*)1'* при 0. 

При S^l имеем 

8 1 

о о 

^ m i n ( l , lY. — T i l " ^ ^ 7 ^ 4 ) - ^ 

<^min(l, 1т*> - • - Til - 4")' 

так как 1 ̂ > -у- (а -+-1). 
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Лемма 10.3. Пусть /(дг) = <х.ъ хк - + - . . . <хх лгчь-<х0 и пусть д л я 2 ^ v ^ & 

•5-——-f-o7 -г- — а—2а? v—— а+а? 

P 2 2 < < 7 I < T 1 = P Î , , , < P 2 , TV = P A . 

Тогда 

Д о к а з а т е л ь с т в о . Пусть D = qt . . . qk. Тогда 

D<PK* 1 < P 
и для 2 < ^ ^ & 

<7v ^ 

Пусть дг=£>£-ь», 71 = 0, Z> — 1, — - J L ^ Ç ^ ^ J . 

В соответствии с т) разобьем сумму на £) частей, каждую вида: 

где | W ( ? ) ) | = 1 . Разобьем ЛГ на < ^ Р 2 2 Z)" - 1 сумм, каждая длины 

<<Р . Для каждой частичной суммы существует константа С такая, 
что 

1 а_ 

так как, при I — £,'<^Р~Г+г, 2 < v < £ , 

Поэтому эта частичная сумма может быть заменена суммой 

где $ пробегает некоторый интервал длины Р 2 2 с ошибкой О VP 2 2 / . 
Пусть 
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Тогда, согласно лемме 1.8, 

так как 

f¥^l>7-»fâ>'4-^p4J)^4 

Поэтому 

и мы имеем 

1 а L JL 

S^P Х-аЧ 

3. Результат, относящийся к проблеме Tarry 

Т е о р е м а 16. Пусть 

Тогда 

Г ( Р ) = [ . . . J | 5 ( a Ä , . . . , *1)\*idxJc...dz1 = c1c2P 

если t^t0f где *0 задается следующей табличкой: 

k 2 3 4 5 6 7 a 9 10 

to 4 9 24 63 157 381 890 2040 4596 

а при £ ^ 1 1 4=4- D ([6iog^2x(f-;1<>?23-2] -
( ~ 1 • 5ks logic для больших k), 

постоянные c l f с2 задаются формулами 
GO 00 1 

ci==f*' ,f н »-ßi*)<k 
— C D — C O 

Ii 

CO ?l 

c *=2 " -2 2 ••• 2 
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Д о к а з а т е л ь с т в о . 1) В силу периодичности функции *.oCi)> 
имеем 

T j « t j . 

где 
— v—г- а+а7 

T l = / > 2

f r v = P 2 , 2 < v < £ . 

Известно, что для всякой точки ^-мерного пространства ( a l f . . . , a t ) 

имеется рациональная точка \ ^ » • • • ч -^-j такая, что 

Пусть Tt ? • • • J j — область, определяемая неравенствами 

k — —l<-V» l < v < £ , 

в которых 

1 < * < P * ~ " " " " ( 2 < V < Ä ) , l < 9 l < P 2 

1 1 1 -* 
a—2a? - 7 — — a-ha 7 

2 2 
Легко показать, что никакие две области 9JÎ не перекрываются. Пусть 

Е—часть области 

— — < < * V < 1 — — > 

остающаяся после удаления всех 301. Полагаем 

г,= ( . . . [ |Я»а , . .Л 

а» 
где 

Тогда 
ЗА 

2) Пусть H=q1...ql. Если 

х=т + г>, 7, = ! , . . . , Я, - 7 ) / Я < ^ < ( Р - п ) / Я , 
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то на 2Ä имеем 

где 

Пусть 

Wn= V e (ß i ( /^-bV 1 )
I 4- . . . -4 -ß 1 ( /^ -*-„)). 

? (£) = ß* (Щ-*-Т0)* H 1" ßX ( £ ß H - V , ) . 

Тогда для больших Р 

так как при 2 < ^ v ^ £ 

= 0 ( P - ° ) = 0 ( 1 ) 

В силу леммы 7.5, имеем 

( Р - 7 ] ) / # 

Пусть х = Р - 1 ( ^ Я - ь ^ ) , Yv=ßv^ v ( 1 < ^ < Л ) ; имеем 

где 
1 

Р = j е(у А л*ч-*»-ч-у1*)Аг. 

а 
Итак, где 

7 J = 1 
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3) По теореме 1, инеем 

я 

' ' « J 5 7 , 4 ' 5 VIT 

Я/А 

=4- 2 е (̂ ^̂ И* • • • - ь*Нг*ч)/ •? ) 
7J=1 

- т И $ Г " « ( 4 Г . 
где rf = ( f l r 1 . . . q r M Ä l , . . . f hxq2...qkf q1...q1e). Так как (Av, 
1 < Х £ , то 

^ =(<72-»*<7*--i» 4i4s'"<t*>"*> <7i • • • <7*~i)-
Очевидно, 

6 ? < m m ( ^ r 2 . . . ç J f c _ 1 , ^j . -^Cx- .^^iX 

• • <7Ä-i ? i ? з ?х • Ъ-гУ — 

=нг-а. 
Поэтому имеем 

В силу леммы ЮЛ, 

Так как на 5Й 

Ж 

Z = m i n ( l , | г Г , -••,lïir) = mm(l, (P|ß|)-, .. ..(/*|ß,m> 
î , P 2 , P 2 J > / > 2 , 

TO 

В силу (1) и (3), имеем на SR 
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имеем 

Таким образом, 

—i - î 

со со 

о ( Я Р 2 * - 1 я - 4 2 * - 1 ' " " f... J Z 2 ' " 1 <fo... 
—-со —со 

Пусть \ — max (1, | yv |) # Очевидно, 

Д Sv = J[ max(l, | Y v | ) < m a x ( l , | Y l | , • • • , Ш)\ 

4=1 4=1 

и мы имеем 

»=1 
Тогда 

0 0 0 0 4 * ( i + i ) 0 3 

—со —со —оо —со 
1 » со 

</>" 
T i ( i + 1 ) Г f <fri...<fri _ 

= o \ p 2 Л 
так как а 2 ^ — 1 ) > 1 (т. е. 2*>£ 2-1-1). 

Следовательно, 

\Чш Яг! 

—г - 1 - i - i 

4 ) Из ( l ) f (3), (4) и простого неравенства 

W-\tf\<*\i-M<\it"M*r*) 
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1 V f t 9 1 л i l * J - î 

- i f T f р f i x i р 

^ 0 ( / - T * ^ ) - x / / 1 _ e 5 ( 2 t _ 1 ) + ^ ( 5 ) 

5) Имеем: 

- ^ х Г 1 ^ "С 1 h** —*оо —со 

= C L - 4 - 0 ( p - ( a e î - 1 ) 0 ' ) -

Таким образом, согласно (5) и (2), имеем 

Q ( A ) . . . , M = = C i | 5 / i L , . . . , A ) " P w - > + 1 )

H _ 
W* c/i у 1 1 U* 9 1 / ^ 

f 2*—l-kß+l)—(2ie2-l) 07 _ \ 

•+-OIP ' Н-Ш^)ч-

~o(Jr~**M
 й"~*«). (6) 

Пусть 
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Тогда, в силу (6), 

Ты = схАР 2 - 4 - 0 P 2 

так как 

2 я - а и 1 + е < 

2 я 1 

= С 1 Л Р 2 -*-0[Р 2 Л (7) 

2••• 2я1_шм"=0(1)' прИ *>3« 
2 Я - 1 " " = 0(Р') ,прн £ = * 2 , 3 

2 Я 1 - . a t (2*—l)-bt 

со со 

= 0 (1) , при 

= о ( р * ) , при 

f 

= о ( р * ) , при 

I 

2^ = О ( Р ^ ) , при 

(В качестве примера дадим подробное доказательство для & = 2: 

1 1 1 / i.-e+JL_JL +2—ЛА !\ 
2"т= 2 t 2 »?<0" ! ' 

2_i I_i+î-^ 
4 2er

 t 4 
Далее, для & ^ 4 : 

^ W 2 2 - 2 2 2 
j=2 î i = l tf_i=l i e _ î r f r , & ' + ' = = 1 î 4 = 1 

î y > p 2 

0 / 2 - 2 2 . 7 ^ • l - M 

= C2 + 0(P-*')-
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£>Р8 ' ^ й>Р 

= с 2 + о ( р - е 0 -

В силу (7), имеем 

^ ) = c l C i P 2 н-(Д/> 2 Л (8) 

6) Рассмотрим теперь 7*(i). В силу леммы 5.8, на Е имеем 

S=0(Pl Х ) , *=23.2*7(1оо; 2*)2* 

6.1) Предположим, что £<^10. Тогда, по теореме 5, 

о о 

6.2) Предположим, что к > 10. Тогда, по теореме 7, 

Берем 

Так как 

то 

_ Г6 Ьо; к 2 Ьо; Ьо; 2к log- 23.21 -
П-[_ -\os(l~a) J"4-1' 

Для k=2 и 3 это заключение также справедливо. Действительно 
для к—2, например: 
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к 2 3 4 5 6 7 8 9 10 >п 

SQ 7 19 49 127 315 763 1781 4081 9173 4.14fc(Jfe-t-l)(]fe-i-2) log-it 

Пусть I(Nt, • • • , iVj) обозначает число решений системы: 

Pi -+-Р2 -» * - P s ~ ^ 

Pl2+pf-

Pi -*-Pa • 

(1) 

где p — простые числа. Пусть Nk

a — P. Число решений системы (1) 
может быть выражено в виде 

*--~fcU-+-i) 
_ о ] / > 2 

, - _ * ( * - Ы ) 

^де 
СО СО / 1 \ 8 

^=J " •* f ( Je(ï***H H T I X ) C / X W — ~ § T i ^Yi )^ ï*- - -^Yi» 

—со —со \ 0 ' 
с о 

@(Л4,. . . ,^)= 2 ^ f o i . • • • . < & ) . 

x ( ç x . 2 ' r *( -$ N * 

З а м е ч а н и е . Так как л < 7.90 £ log £ и 

Ъп -ь (т < 3.95k (k 1) (jfc ч - 2) log- k 

к(кч-1)х 23.2k7 (log 2kY (1 — af < 

< 3.95 k(k-Ы)(k-ь2)log £ -y£ 2 (£ ч ~ 1 ) < 

< 4.14* (£ - Ы ) (£ ч - 2) log k — 1, 

то мы снова получаем этот результат, если только 

t > 2.07* (k ч - 1) (k ч - 2) log * — 1. 

4* Формулировка теоремы 17 

Пусть k—целое число ^>2, s — целое число ^ s 0 , где s 0 задается 
следующей табличкой: 
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(здесь A i , . . . , Л* пробегают приведенную систему вычетов соответ­
ственно, mod ft,..., mod qk), и 

<p(Q) ^шшЛ \qjc Ял 1 

(здесь Q есть общее наименьшее кратное чисел qt,..., qk, ax пробе­
гает приведенную систему вычетов по модулю Q). 

5» Доказательство теоремы 
1) Пусть 

. ? = ( * * , . . . , « i ) = 2 e(/W)> = • • • 
Тогда 

l i 

I(Nk,. •., Nx) = J ddt ... \ Ss К,..., aj e (— a* N^Jdoc^ 
о о 

= j [ ^ ( ^ . . . . . a ^ e f — A W < 4 . 

где T v = P v L a v и 

<xv > 26*"1*1 (<r4 ч H ( j v + 1 Si -+ -1 ) 5 

a sx—некоторое заданное целое число. 
Для всякого a v из (—TV""X, 1 — т ^ 1 ) существует пара целых чисел 
и <7V, такая что 

a v — A v / ? v = ß v, lßy |<-zV> t A v, ?v) = l» 0 < < ^ < т , . 

Таким образом, всякая точка ( a * , . . . , о б л а с т и интегрирования содер-
жится в подобласти вида 

I*1—К1ЧчI < ЧС 1 1 < v < * . 

Мы разбиваем эти подобласти на такие классы: 
1 ° . Подобласти, у которых LQh ^qk^rk* обозначаем их тк. 
2°. Подобласти, у которых 0 < < 7 А < £ ° * и V-i î обозна­

чаем ИХ 777л__1. 

v? Подобласти, у которых 0 < qk < L a * , 0 < qk_^t < L ^ i + 2 , но L 0*-*» < 
v+i ; обозначаем их m 4 _ v + х . 
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к0. Подобласти, у которых 0 < ^ < L a f e , 0 < ç 2 < L e % но V1 <1 
^ 9 r i ^ T i î обозначаем их тх. 

(*-+-1)? Подобласти, у которых 0<С<7У< / - а э , l < J v ^ £ ; 

обозначаем их 3DÎ — 3DÎ (— > • • • » — ) • 

Легко убедиться в том, что никакие два WI не перекрываются. Пусть 
Щ — часть области интегрирования, не лежащая ни в одном 2Ä. Тогда 

/ ( # „ . . . , #i)=(2f •+• j ) ^ e ( - a , ^ a ^ d * , . . . ^ . 

2) Лемма 10.4. Пусть 

р 

•S* (Ь,.. • , ь> = J т̂̂ - v < * ) = ß * •+• • • • •+• ßi * 

Тогда на 3)t(-k-, • • • , 

где 

V 9ft qXI JÏm \qk qX I 
x=l 

a Q обозначает наименьшее кратное чисел qk,...y qx. 
Д о к а з а т е л ь с т в о . Очевидно, Q<C£/l~*~' *~*"а*. 

Пусть 

Тогда, по теореме Siegel-Walfisz'a (лемма 7.14), 

( * ,Ç )= l * > = M 0 

Мы нмеем 

£ ( « » , . . . . « i ) = 2 ( Ä , - Ä , _ i ) e ( W ( m ) ) = 

== 5 5 f f l ( e ( T ( m ) ) - e ( W ( m H - l ) ) ) + ^ e ( W ( f + l ) ) = 

2 ^ m ^ P 
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W» 4x1 
9(Q) 

- l i P e ( W ( P - H l ) ) 

2 Um(e(W(m)) — e ( m 1 ) ) ) 

так как 

Ре~*^( 2 к С ^ Ы ) — e(T(m + l)) | + l k 
\ï^m^P J 

Далее, 

V К m (e OF (m)) ~e(W(m + l))) + Ii Pe (W 1)) 

= 2 e < w < m » I log* 
З^т^Р m—1 

m 

3<m^P m—1 

= ^ * ( ß i , . . . , ß i ) - b O ( Z " - , - + 0 * ) , 

откуда вытекает наша лемма. 

Лемма 10.5. Пусть I F = m i n ( l , I ßx • • • ßarl-

Тогда 

и, следовательно, 

2/Р 

Д о к а з а т е л ь с т в о . В силу второй теоремы о среднем значений 
и леммы 10.2, имеем 

0 2/Р 
2 Г 8 X"-8 1 

0 2/Р х - « 

= О (J7*
 (1-0) Г) -I- О Г) = 

= (login-2). 
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3) Л е м м а 10.6. На 

5 ( o t l , . . . , o 1 ) = 0(PL—)• 

Д о к а з а т е л ь с т в о . Пусть а принадлежит тъ. Рассмотрим 

Пусть Q№ — общее наименьшее кратное чисел qk,..., Тогда 
Q я<^Г*" ,"••• +" , + ,. По теореме 10, имеем 

Qn 

1=-1 
У e ( V -

==0(Р1Г81~~ак~~'''~~'вп+1)1 

так как 

Пусть 

Имеем тогда: 

5 ( а * „ . . . , *,) = 2 ( ^ ( m ) - 5 ( m - l ) ) e ( W ( m ) ) = 
m^P 

= 2 S ( m ) ( e ( W ( m ) ) - e ( W ( m 4 - l ) ) ) . 

Таким образом, 

5 ( a i , . . . , a 1 X P L - " - 0 i 

W ^ P 

4) Для / Ь ^ З в силу теоремы 16 и леммы 10.6, имеем 

< ( P L - ' 0 ' - " + 1 f • • -f | 5 ( a i f . . . . o c j r 1 ^ . . . ^ ^ 
SR 

2 L~'x. 
10 Труди Математ. ин-та, т. X X I I 
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I i i 
j " • • • [ | 5 ( а 3 , а 2 , а ^ Р dazdcL2ddx<^PL *l j * J | | S ( а 3 , а 2 , a j | 6 ^ r f a ^ a ^ 

О О О 

2 ' jrj—Si-t-Z 

5) Л е м м а 10.7. При г > £ 2 - + - 1 

00 00 

— C D —00 

Д о к а з а т е л ь с т в о . Интеграл слева есть 

00 со P 

—00 —00 

log-* 

Пусть х=Рд, ß y = y v P v , тогда этот интеграл равняется 

2 < - i *(*+!) 0 0 0 0 1 

-эо —со 2/Р 

» zr'J" . . . j" r'rfY l...rfT l, 
—со —со 

и наша лемма следует из леммы 10.5, так как 

00 со 1 

f - J I «fr rfYft ...^=0(1). 

Следовательно, интеграл 
со 

I y~ia" dy 
сходящийся. 

6) Воспользуемся простым неравенством 

В силу леммы 10.4, будем иметь 

21" * J'S'fe'•••»*»)«С --W* A* Nxv.1)da.i...dx1 — 

ж ж 

_ ч1
 1 в ад г.. 

^ \ 9(0) «7* <7i / J 

Для к = 2, в силу теоремы 5 (теоремы В2% имеем 
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• ' • f S*° (h,. • •, ßi) e (- Nt ß* iVi W . . . < 
a» 

V о о 
oo со 

ç л —со —со 

потому что, согласно теореме 15, 

1 1 

О 

а в силу леммы 10.7 

со 

1 1 i_*(jH-i) 
2 

оэ 00 , 1 , „ , , Ч 

—00 —со 

2 2 Q " ( s _ 1 ) e < 2 ^ - ' яУ-™"°=о{р) 
g k 

(так как Q, общее наименьшее кратное ft,..., (jr*, больше или равно, 
m a x ( q l t . . . % ) > ( f c , . . . , qk)"). 

7) Мы имеем 

X 1 / Г ^ ' ' ' ' ft") \ ^ V i M у 

X J j > ' e(-tf tß t- A ^ y ß * . . . ^ 

_ v v v ' • ft)\f/ аду 

~ Zi 2 л " ' ^ A 9(0) I » ' ft/ 
1 m. 1 » *» ** V ' 

X j . . . J 5 * в е ( - Л ^ ß t Nx • . - ^ -+-

\ 1 -̂ „<rl. nr. 1 /7 _ . 1 1 .==1 0.=1 / 

10* 
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При этом остаточный член 

\ та v 

= 0 V / " 2 L2 / = 

так как -y-(sa — 2)<7„>s - i - l . Таким образом, 

2Ш'в(-№ ft^)f • • ̂ W , - ^ 
SR ÜÄ 

- 2 •••2 2-2ШЧ-**— X 
1 л 1 « *' * * 

X J - - • f S*se(Ç>kNk Pi^rfß*...^. 
î 

8) При q^L , имеем 

\—со —оо g j j / 

/ * CO CO 00 со со \ 

= ° ( 2 f ^ v - x J jisr^ к 
V V=l —со —СО у—1 ^—V ^<J V —со —со / 

fc 00 оо сю со 

N=1 —00 —CO л—1 7<rv —СО 

00 1 

logPy 
—оо 2/Р 

< ^ J Y, ^ T V ^ < 
V = l 1 

s-- ï-i ( iH-l) iav(l—2«rf>) 

» - | - i ( J H - l ) 

^ 2 * 1 г < 
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так как 

Поэтому 

2R 

- i - d v ( 2 a 2 s — l ) > 2 s - b l для l < v < j t 

X 

X j -\S*°,Ъ)е{~m* N^fa.. 

= у ... х;...у 
1 « . 1 а * * * > 

2-°* у а 1 

HQ) P i яъ* 4i VV X 
\ 

с о СО 

—CO —со 

9) Для &^>3 имеем 

бслг,. . . . .ли- 2 ••• 2 2 
1 1 *jt 

V M ^ - ' ) 

CO 00 ^ 2 2 - 2 2 2 •••2*...*<r~. 
3*=1 «v+i=l 1 „ 5v—1=1 «1=1 

< 2 2 ?ro5+t<^-1-s. 

так как 
- ^ < T Y ( s a 2 — 2 ) > 1 - H S . 

Для £ = 2 этот результат может быть получен методом пункта 5) 
в доказательстве теоремы 16. 
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Мы имеем поэтому 

2(%r^)V^.-----^)>< 
Ж 

X J . . . J S" e ( - Ai Ai fc) . . . fa = 

2Jî 
00 со 

= © ( 7 V f c , . . . , 7 V 1 ) J ' . . . f ^ ( ß „ . - . , ß i ) e ( - ß f c 7 V , ß x W ß * - ^ 
-co - 8 

/ t - i-k (*+l) \ 

10) Имеем 

со со 

J . . . J S * ä ( ß * , " . , ß i ) e ( - ^ ß * AjßJJß* = 

= P J . . . 
—00 

J ( ï , f T,) é„ • • • * . 

—00 —00 

—oo V2/P 

В силу леммы 10.5, 

f • • • Кг^У*'» ?т.) 
-CO —оо \ 2/Р 7 

со 

—со 

* • J (j e <T*** H H Y i * i ) < f r ) e ( — у ъ Ъ y Y i ) ^ • • • ^ Y i -

-o (^- )J . . . j V - V T i . . ^ T l = 
— O O —00 

Окончательно имеем 

2 f «S* (a 4 , . . . , a,) e (— a» Л*» NJ da.t... d*^ 
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где 
со / 1 со со л 1 \ * W И J « ( ï » ^ 4 — - * T I ^ Ä ) е { - % Ь 5 YiK- • 

—со — с о \ О I 
Таким образом получаем нашу теорему. 

Если é > 0 и @ ( Л ^ , . . . , Л Г 1 ) ^ с > 0 (где Ь и с не зависят от 
постоянных то при достаточно больших N система диофантовых 
уравнений с простыми неизвестными 

s 

разрешима. Ограничения, налагаемые на Ьг и @ , не всегда выполняются» 
Условие е 2 ^ i > 0 назовем „условием порядка", а © ^ с > 0 — „усло­
вием сравнимости". 

6. Условие, налагаемое на константу 

со 0 0 / 1 \ s 

J ( f e(fMJt-*- — +tix)<LLXJ e(-T*~&*-iY*-i ^Yi^Y — ^Yi 
—оо —со ̂  0 / 

(условие порядка). 

Пусть 

= f • • j" f jefajf-t-'-'^xidxJe(—r.-^r^ *iYi)^Yi. 

Тогда, по определению, 

Ьг = lim . . . lim -б(%,..., 

Меняя порядок интегрирования, имеем 

О 0 —ü)j 

J e ( Y * ( * i * h н х ш — ! ) 4 *~Yi(xi~* — d b = 
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Пусть 

Хъ=х?-л H * / — 1 . 

Тогда 

г -Р (*i. • • • . *t) _ J_ 
J— D{Xi, ...Xt) — kl 

1, 
x 2 , . . . , л:̂  

—1 

*1 До*-*/) 

Разделим область O ^ ^ ^ l , . . 0 ^ д г в ^ 1 на части D J T в каждой из 
которых преобразование (1) взаимно однозначно, a J не меняет знака» 
Тогда 

sin 2тг(о3 Xi 

...dXt f ... failli* 
sin 27C(Oj » у 

о 

Отсюда, по теореме Дирихле, 

l i m 5 ( « ) = f • - - f , f * r 1 " ^ > 0 ) 

0 
0 â , $ 
Хр=0 

если только система уравнений 

X=xf-t i-дг t = 0 , 1 < ^ < £ , 

( 2 ) 

(3) 

имеет в рассматриваемой области действительное решение. 
Дадим теперь условие разрешимости системы (3). 
Л е м м а 10.7. Пусть s^k. Чтобы система уравнений 

х х

А ч + xs

h = \ 1 < А < £ , 0 < x v < l , Ък=1 (D 
была разрешима, необходимо и достаточно, чтобы существовали веще­
ственные числа SjH-i,. . . , \ такие, что 

а) главные миноры матрицы 
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неотрицательны; здесь \ = s, a Sv (v > $) заданы рекуррентной формулой: 

к 1 о 
2 

О 
О 

5—2 ' 

v—2 

5 

Ъ) главные миноры матрицы 

*х 1 О 

2 

О 

О 

\ s—1 *-2 ' 

неотрицательны, и если равен нулю ее v-й главный минор, то и ее 
(v-f-l)-ft главный минор тоже равен нулю (т. е. матрица „с нулевым 
хвостом"). 

Д о к а з а т е л ь с т в о . Необходимость. 
1а) Пусть R ^ t 0 + tx х + ь ^ л * - 1 . 

Так как 
8 8~1 / 8 

»,У=0 

( 2 ) 

есть положительно-определенная или полуопределенная форма, то, 
согласно хорошо известной теореме о матрицах, получаем условие а). 

lb) Пусть crv — v-я элементарная симметрическая функция от 
* i , . , . t х9. Тогда 

\1 О . . . О 

. 0 

2) Достаточность. Очевидно, существуют s чисел xlf...9x8 действи­
тельных или комплексных, таких, что 

ьлг/ = &А ( 1 < А < 5 ) . 

2а) Числа х вещественны. Пусть х/ (1 п), всевозможные раз­
личные числа из х и x^'t встречаются среди х ev раз. Предположим, что 

Х2т—1 У2т—1+ 1Угт •> 

Х2т У2т—1 1У%т ? У2т¥=0 при 1 < 7 П < £ 
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Х „ ' = # , При 2 £ < 7 7 1 < Л , 

где у вещественны. Пусть # 2 m _ i = Р^т-г *Pzm

 и ^2т — - ^ т - х — 1 Р Ы . 
Рассмотрим систему линейных уравнений относительно < 0 , . . . , <,_ х . 

Р у = 0 при 3 < v < 2 & 

R, = 0 n p n 2 ^ < v < n , (3) 

Мы покажем, что (3) имеет решение 2 0 , . . . , ta^19 причем все t равны 
нулю, и Рг=£0. Существование решения системы (3) очевидно. Допу­
стим, что все решения (3) таковы, что Рг = 0. Тогда Рг зависит линейно 
от Ä v ( 3 ^ v ^ | r ) ; следовательно, Яг зависит линейно от i ? v ( 2 < ^ v ^ £ ) . 
А это противоречит тому, что все х1 различны. 

Пусть tf0,..., — решение системы (3) такое, что Рг=£0. Тогда 

s 

2 я , 2 = Ъ ((Рг -н iP2f -f- (Р{ - iP2f)= 

v=l 
= 2ъ (Рг2 - Р / ) = - бе, Р» < 0. 

Это противоречит предположению а), следовательно, форма (2) не может 
быть неопределенной. 

2Ь) Числа х положительны. Условие Ь) утверждает, что ffv>0, 
и наше утверждение получается непосредственно из правила знаков 
Декарта. 

2с) В силу 2Ь) и того, что Sfc = l , утверждение получается непосред­
ственно. 

Следующее достаточное условие более удобно для применения. 
Лемма 10.8. Пусть s^k. Система уравнений 

^ * ч - . . - - ь х / = &А, 1 < Л < £ , 0 < * V < 1 , \ = 1 

разрешима, если 
а) главные миноры матрицы 
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неотрицательны; здесь \ — k, a S v ( v > £ ) задаются рекуррентной фор­
мулой: 

\ 1 0 . . 0 

К К 2 . . 0 

\ .. k 

ь 
V 

К-* . 

= 0, 

b) главные миноры матрицы 

Ьх 1 0 . . . О 
&2 \ 2 . . . 0 

положительны. 
Д о к а з а т е л ь с т в о . Эту лемму мы можем получить из леммы 

10.7. Положим 
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Дальнейшее рассмотрение проблемы главы X 

1. 

Как следствие теоремы 17 получается, что система диофантовых 
уравнений 

л * н | - Л * : = Ai, 

Pi н = Л Г

1 

разрепшма при достаточно больших целых N, если выполнено некоторое 
„условие порядка" и 

Л ^ ) > 0 , 

причем s>4.14>t(AHHl)(yt-i-2)log'^. 
Теперь мы пойдем дальше, именно — будет показано, что эта система 

диофантовых уравнений разрешима при определенных условиях порядка, 
если 

@ ( Л £ , . . . , A i ) > 0 
и 

s > 2 £ 2 4 - 3 4 ~ £ l o g ( 2 3 . 2 F ( l o g 2 > ^ ^ для больших к). 

В дальнейшей части главы мы изучим условия, при которых 

2. 

Л е м м а 11.1. Пусть 

(2v — l ) Q < x , < 2 v Q , l < v < £ . 

Тогда число систем целых чисел x l t . . . , хь таких, что 

дг/н ндг/ 1 < А < £ , 

лежат в интервалах, соответственно, длины <^ Q * - 1 (1 ^ А ̂  k), будет 
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Метод доказательства леммы 5.1 может быть без существенных 

изменений применен к этой лемме. 
Л е м м а 11.2. Пусть Rk — число решений системы уравнений 

J = l *=1 /=1 i = l 

где 

( 2 / ~ 1 ) Р ( 1 ^ ) У ~ 1 < * . , * ; . < 2 г 7 > м ' ~ \ (2) 

Тогда 
f 2Р-1 к ) (1-(1~а)«) 

Д о к а з а т е л ь с т в о . Из (1) и (2) легко выводим 

Тогда, при фиксированном xa

f (i = 1 , . . . , 

* л ft 
^ к ^ Ä - I ^sn 

лежат в интервалах, соответственно, длины 

О (p* ( 1 - f l ) ) 5 О ( р ^ 1 ) ^ ) O O P 1 " * ) . (3) 

Так как система интервалов (3) может быть разбита на 

/ р » ( 1 - в ) />(*-1)(1-«) р2(1 -а )р1 -в\ / *_Lft-|-i)\ 

систем интервалов длины 

ОСР*-1), о(р*-2),..., о(р), o(i), 

то, в силу леммы 11.1 (при Q—P), число систем значений ха (1 < £ < 

есть 2 . Поэтому число систем ха и * я ' (г = 1 , . . . , к) есть 

О[Р
 2 Л 

Далее, при фиксированных x{J, (1 < . z <С 1 <^ у < ! / — 1) 
и л : ^ , ( 1 ^ £ ^ £ ) , согласно (1) и (2), 
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лежат в интервалах, соответственно, длины 

Так как 

n f рЧ1~°)1_ Р('-Щ1-°)1 P a - a ) l \ _ п( р(*-Т < Н \ 
О [ р ГУ \ Г 

то, в силу леммы 11.1 (при Q = P ( 1 _ a ) J ' ) , число систем ха(1^г^.к} 
есть 

Поэтому, при фиксированных JciV, дг .̂', ( 1 < ^ * ^ & , 1 < ^ . / ^ / — 1 ) , число 
систем хп и дс;/ есть 

Таким образом, полное число решений системы уравнений (1) прш 
ограничении (2) есть 

Q { ^ P (2*- ^ ( 1 " + ( 1 ~ A ) " H (1-^W""1)^ = 

= о ( р(™~~ * (Ä+1)Ä)(1^(1^)W)) 

3. 
Пусть 

5# (а А , . . . , о О = 2 е(аА п * н ь ах тг) , 
(2t—1) р «У ~~' «С2гР С1 — 

1 < £ < £ , 1 < 7 < п . 

Л е м м а 11.3. Пусть t — lê-*-\, тогда для 

_ riog(23.2fe7(log2feP)-j 
L - l o g ( l - a ) J 1 

2<+2*5(1—Cl-»)")-v *(*+!) 
dcni...dcf.1<^.P 

имеем 

0 0 I j = l *=1 

Д о к а з а т е л ь с т в о . Мы разбиваем область интегрирования так же,, 
как это делалось в доказательстве теоремы 16. 
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Так как t^k*-*~l9 то 

(доказывается так же, как теорема 16). Поэтому 

« - T i ( i + i ) 

SR SÄ 

n Ä 

п п dcLk . . . dv.x < ^ P 2 

Возьмем 
_f7 Iog-fe-t-2 

- lo*( l —a) 

Так как 5 0 < / > 1 _ \ л = 2 3 > ; / f c 7 ( i o g 2 f c ) 2 » T 0 

f 7 Log & -t- 2 log log 2fe -t- log 23.21 
n ~ L - l o g ( l - a ) J - 4 - 1 ' 

д—x ^ 1 

A(fc-bl) 
2X d-a) '*< X 23.2£7 (log 2£) 2(1 — a ) " < 

< k - ^ < 2 t 

Следовательно, в силу леммы 11.2, 

1 n fc 

0 j=l t=l 
<" a : - II JI * 

2; 

4. 
Соответственно определяем 

Yo a i / > ) > 

1>г£2Р 

! < £ < & , l < f < n . Пусть [ - ^ ( ^ 4 - 3 ) ] и 

n К 
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где / (Nl9 •.., Щ означает число решений системы уравнений 

ft п 2*4-1 

2 2 ^ 2 2 ^ 2 ' " = " » !< А <^ 
4=1 У=1 t=l У=1 v = l 

тде 2kP=Nt

a. 
Л е м м а 11.4. 

2*+И-2*Ч1-(1—«)">- TT * ( * + ! ) 

г 2rf-4-l+2ftw { 1 н - 0 ( ¥ ) ) . 

где 
со 0 0 Г/ 1 \2to-l ft / va \ 2 

—оо —оо I \0 / v = l \ a i 

X tfri • • • «*r* * 

Д о к а з а т е л ь с т в о . Имеем 
i l » * 

y=l i=l 

Разобьем область интегрирования так же, как в доказательстве теоремы 17 # 

В силу леммы 10.3, 

п к 

[ • • • I тГ-ППт* 
Ш y=i 1=1 

1 1 n ft 

^PL-1 J . . . J |Tor П П lïffl2 .̂...̂ ^ 
О О /=1 1=1 

<Р 2 ZT 

Так же как в теореме 17, имеем 

ft 

2 J Г Г 1 П Т« е ( - N* К* Л£ o j «fa, . • • < 
SR SR ' - 1 

= b2'<S(N)P 2 I - ^ f l + o f ^ ) ) , 

file:///2to-l
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где 

со / 1 \ 2*-Hi ft / v a \ 2 

J I f е(Ъх*+~ • +Ъх)ах J] [ J « (Y* • 4 ~ Y i X 

x e 1 ~ р ^ Y* uFYiJ <*Г* • • • <fy • 

Далее, легко получить требуемую лемму, применяя тот же метод, 
•что в лемме 9.6. 

5. Особые ряды 

Мы употребляем символ ^ для обозначения суммы, когда пере-
х 

менное дг пробегает полную систему вычетов по модулю q, а ^ — для 
х 

обозначения суммы при х, пробегающем приведенную систему вычетов 
но модулю q. Имеем 

со со 

g 1=1 îft=l 
ft ?ft 

Л ,.. - ,9г) = 2 • • • 2' Г 6 ( - £ ̂  £ О ' 
Aft 

<?(Q) лш-А Kqjc 4i J 
x 

Ф (<7i • • * <7ft) ^ - J V 9ft <7i / 

оде Q — общее наименьшее кратное чисел qk ,..,, qx. 
Пусть B^(m) обозначает число решений системы сравнений 

(mod m), 
A i —i н А, ' 

l < Ä , < m , (К, m) = lt l < v < * . 
11 Труды Математ. ин-та, т. X X I I 
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Л е м м а 11.5. 

2 • • • 2 M<h,-,4ù=fr,<pl) W{P\ 

Д о к а з а т е л ь с т в о . Имеем 

pi pi pi 

• • 2 е ? г ( М * 1 * Н — Nù-* « - Â i f e n Л У ) = 

^-?V)2 - 2 \ - — ^ J
 eA-w—w= 

Ai=l Аь=1 

Л е м м а 11.6. Если Ц , m2) = 1, то 

l F ( m l T O 2 ) = r ( m i ) lF(m 2). 
Очевидно. 

Лемма 11.7. 

2 • • • S ^..-.ft)=n(5-2^(ft *) 
И 

*"> C° ' v ~ l \ ft/pv* qypj i 

где pl9 p29 . . . суть простые числа в их естественном порядке. 
Д о к а з а т е л ь с т в о . Эта лемма есть следствие лемм 11.5 и 11.6» 

так как 
со со 

l @ W , . . . , i V i ) l < 2 - - - 2|Л<**'••••*)!< 

< 2 — ^ ( « . - ^ « г - ч ч 

\1—сРв+* 

№ •• • Vi 



Система диофантовых уравнений 

А(Ч*> • • •» <7i)<C<7i • • • <7i CTW + t<^(<7i...<7*) 
1—02 Я-f-s 

ТО 

= l-i-0| 

Пусть 

D = 

TJC—1 n*—1 1 

/С , . • « , ^ , X 

. . • j 2, 1 
1, • • « , ! , 1 

- i = 

и рв I ID. Итак, при p^k имеем © = 0. Пусть 

p^\\», „ — ^ e , ^ @ 0 = m a x ( e i © j ) . 

Пусть П^(/>') означает число решений системы сравнений 

Ух -+-•••-«-g* = Nb 

9i 
(mod/Д рфу, 

в которой 

рч|| 

—1 

1, • . . , 1 
1 Эту границу можно улучшить, если воспользоваться равенством 

Q= ?1 • • • <7* 
(Яг • • - Я , • - - , Яг . •. Яь-г) 

И* 

так что, при s > 2 P - b l , 1 (g сходится абсолютно. 

Л е м м а 11.8. При s > 2 £ 2 - f - l 

Д о к а з а т е л ь с т в о . Так как 
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Л е м м а 11.9. Система сравнений 

2 ^ ^ = 4 в Н Л 1 < а < & , 

ß=i 

zu 
ai, i > • • • > 

разрешима, если 

*1 а12 • ••ап а п . . 

p 1 
к а и • • • атл 

Д о к а з а т е л ь с т в о . Лемма доказывается классическим методом 
детерминантов. 

Л е м м а 11.10. При и s^>{k-^l)p имеем W1(p)^l. 
Д о к а з а т е л ь с т в о . Так как система сравнений 

хг (k ч~ iy х2 £v -ь х3 (£ — l) v н ь- лг 4 + 11 v s (mod я), 1 < v < k} 

x x -bx 2 -+ -x 3 « - x M ==s (modя) f 

разрешима при 0 <Cxv^,p, то можно выбрать такое хк+1, что 

x x - i b x w = 5 , 

Л е м м а 11.11. Система сравнений 

X i

v _! ь jce

v = 7VV (mod р), рХх, 1 <^ v ̂  k, 

разрешима при s>2k и р> \j2Jc • (kl)Hs~m. 
Д о к а з а т е л ь с т в о . Число Л/ рассматриваемой системы сравнений* 

очевидно, равно 

±2 
р / р—1 2rct . ь 

( e j a ! * 4 + — ^(«friVH Ч-^Я",) 

e e 

Тогда 

(а#а:*Ч -ъ-ацх) 

где * означает условие, что р не делит все а. В силу формул ( 2 ) 
и (3) , п. 3 , главы I, имеем 

file:///j2Jc


Система диофантовых уравнений 16$ 

1 

так как 

Поэтому 

<. (2k 'kl)2 kl < 

(2k-klf kl p-«(*-w<l. 

M > — — 1) = 1, 

и мы получаем нашу лемму. 

Л е м м а 11.12. При s>3k и p>>ffi > (к\)ч*~щ имеем H ? i ( p ) > l . 
Д о к а з а т е л ь с т в о . В силу леммы 11.11, система сравнений 

x^-i ы / =ЛГ ; — Г — 2 V £ v, l < v < £ , 

разрешима при f>2k, p>\fTc(klf{* 2 А ) , и мы получаем нашу лемму. 
Л е м м а 11.13. При 2 © - ь 2 в 0 н - 1 имеем 

W1(pl+x)>p-kW1(pl). 

Следовательно, для всякого положительного целого числа 

w^p^^p^-^WM. 

Д о к а з а т е л ь с т в о . Мы предполагаем, что 

s 

_2У=Д(тоо>' ) , (1) 
и=1 

Пусть A ( l = 5 | i - * - z ( l p t - ö » - e . Тогда 

* * в 

p .= l JA=-1 fJL=l 

Рассмотрим теперь систему сравнений 
a 

2 v o ^ _ 1 H - ^ e - e , (3) 
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Если условия (2) и (3) выполняются, то 

s 

2#V^ (mod/,'* 1). 

Так как 
И=1 

k0(k — l)0... 1 0 

(4) 

в I во+в-в, [ , 
Я \Р I в+в, 

то система (3) разрешима при любых zz (к -ь 1 ̂  г <J s). Поэтому 

^ 1 ( р ( + 1 ) > Р в - * ^ ( Р г ) -

Т е о р е м а 18. Если s > 2 (&-§-1) • £! и 

Г 1 ( / ? 2 9 + 2 0 о + 1 ) > 1 

для всех р*Ск, то © ( Л ^ , . . . , больше или равна некоторой положи­
тельной константе, не зависящей от чисел Л/". 

Д о к а з а т е л ь с т в о . Возьмем в лемме 11.8 е = ~ ~ « Тогда для 

p^(C(k)f** получим 

«i l?* « i * ' 

Далее, в силу лемм 11.5, 11.3 и 11.12, 

П\Р1 

Согласно лемме 11.7, получаем наше утверждение. 
Замечание . Легко доказать, что, если s^>3k и 

^ ( ^ 2 0 + 2 0 0 + 1 ) ^ ! 

для всех p^2k(kl)\ то <S(Nk,..., A ^ ) > c o n s t > 0 . 



ГЛАВА XII 

Отдельные результаты 

1. 

В этой главе мы установим некоторые результаты и проблемы, 
которые могут быть получены или решены методом, изложенным в на­
стоящем мемуаре. Проблемы эти, по их природе, могут быть разбиты 
на следующие четыре категории: 

a) проблема, включающая понятия „почти все" и „с положительной 
плотностью"; 

b) проблема, порождаемая гипотезой, что для всякого заданного 
целого числа NÇ>0) существует целое число А такое, что квадрат­
ный многочлен 

х 2 — Х-+- А 

принимает простые значения при л г = 0 , 1 , . . . , N\ 
c) обобщенная проблема одновременного представления чисел сум­

мами многочленов; 
d) результаты, получаемые в предположении, что система уравнений 

хЫ H j r f =J7?~i # i , 1 < А < & , 1 < х , # < Р 
±-*(*4-1) - (fc+1) 

имеет <сг(к)Р£ (\ogP)W) решений. 
Некоторые результаты, не входящие в эти категории, будут даны 

в п. б этой главы. 

2. 

Пусть 33Ï— некоторое множество различных натуральных чисел, 
M (дг) — число элементов множества 2)t, не превосходящих дг. Пусть 9? — 
некоторое подмножество множества Зй, a N(x) означает число элементов 
3Î, не превосходящих дг. Если 
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то говорят, что 5Î содержит почти все элементы Ж. В частности, если: 
ЗА содержит все целые числа = /(mod q), то говорят, что 9? содержит* 
почти все целые числам /(mod q). 

Далее, если 

iim ш>а>0> 
ж=оо х 

то говорят, что 2Я имеет положительную асимптотическую плотность. 
Пусть k(k) означает наименьшее целое число s такое, что множество* 

целых чисел, представимых в виде суммы s к-ых степеней простых 
чисел, содержит почти все целые числа = s (mod k), где к определено 
в главе VIA. Тогда мы можем доказать, что 

А(1) = 2, А ( 2 ) = 3 , А ( 3 ) < 5 , А ( 4 ) < 8 , А ( 5 ) < 1 3 , А ( 6 ) < 2 0 , А ( 7 ) < 2 8 

и 
А (&)<^&-ь m-ь 4, 

где m имеет то же значение, что в п. 1 главы IX. 
Пусть / v (дг) суть s0 многочленов с целыми значениями к-ой степени, 

a s0 задается табличкой: 

k 1 2 3 4 5 6 7 > 8 

so 2 3 5 8 13 2J 28 

Тогда множество целых чисел, представимых в виде f(px) 
имеет положительную асимптотическую плотность. 

3« Формулировка одной гипотезы 

Для всякого заданного N(^>0) существует целое число А такое, 
что 

хг— дг-ь А 

принимает простые значения при лг = 0 , 1 , . . . ,7V. Следующие данные 
подтверждают эту гипотезу: х*— дгч-41 принимает простые значения 
при 0<Сдг<^40; выражения 

х2—х-*~ 19421, дг>—дг-ь 27941, д:2 —д: -4-72491 

весьма богаты простыми значениями (последнее принимает простые 
значения при 0 ^ x ^ 1 1 ООО).1 

1 В e e g е г, N. G. W, H., Report on some calculations of prime numbers, Nieuw. 
Arch. Wiskde, 20, 40—50 (1939). 
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Другими словами, система N-t-1 уравнений относительно N-+-2 
неизвестных pm(0^m^N) и А 

т2 — т-+-А = рт, 0 < т < Д 

разрешима. Исключая А, получаем 

m2 — m = pm — pQ, 1 < m < i V , 

т. е. систему N линейных уравнений с N-+-1 простыми неизвестными. 
Подсказывается следующая, более общая, проблема: разрешима ли система 
N линейных уравнений с N-t- 1 простыми неизвестными 

N+•1 

2 a i j P j = 4„ l<i<N? (1 ) 

Проблема эта должна, повидимому, решаться в положительном смысле 
при некоторых условиях „порядка" и „сравнимости". Но сейчас решение 
такой проблемы лежит вне возможностей математики. Тем не менее 
можно доказать, что система (1) разрешима для почти всех 6, удовлетворяю­
щих определенным условиям „сравнимости". 

Более того, система уравнений 

2JV4-1 

разрешима при больших 6, если выполняются определенные условия 
порядка и сравнимости. 

Наконец, этот тип проблем включает, как частные случаи, следующие 
интересные проблемы: 

I) Гипотеза Гольдбаха: уравнение 

разрешимо при всяком п > 1 (частный случай общей проблемы при 
N=1). 

И) Проблема „близнецов": уравнение 

Pi—/>2 — 2 

имеет бесконечно много решений. 
III) Проблема простых троек: системы уравнений 

Pi р2 = 2, р 2 — р± = 4, 
или 

Pi Р2 — 4 > />2 — РЗ — 2 

имеют бесконечно много решений. 
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IV) Хорошо известно, что множество целочисленных точек, лежащих 
на прямой алгч-б, (a,b) = l, л: = 1 , 2 , . . . , содержит бесконечно много 
простых чисел. Содержит ли множество целочисленных точек на плос­
кости 

(ax-*~by^-c, a! X-+-V у-ь-с*) 

бесконечно много пар простых чисел (р19 р2)? 

4. Метод, использованный в главах X и XI, применим 
и к более общей проблеме 

Пусть { / l f Дх) , • . . , fê i (х)\ (1 ^ z <^ к) — к систем, каждая из s линейно-
независимых многочленов с целыми значениями. Разрешима ли следующая 
система диофантовых уравнений? 

/ п ( й Ь *-fiM = Nlt 

4 (ль * 7 4 > , ) = л ^ . 

Решение проблемы нетрудно при s большем границы, указанной 
в главах X и XI. Единственный пункт доказательства, который стоит 
отметить, — неравенство 

i 

5» Формулировка гипотезы 

Система диофантовых уравнений 

- i к (4+1) 
имеет <^ (&) Р (log Pf1 решений. 

Гипотеза, очевидно, оправдывается для k = l, а для к —2 она доказана 
в главе IV. Вопрос, верна ли она для к^2> остается открытым» 
Если она верна, то почти все результаты этого мемуара могут быть 
улучшены, именно—асимптотическая формула для числа решений верна 
тогда для s > - ^ £ ( £ - f - l ) , и H(k)^sQ~2k\oo;к, к(к)^8г^klogк. 

Разумеется, эта гипотеза имеет еще много приложений в аналитической 
теории чисел. 
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6. В заключение этой главы мы сформулируем еще несколько 
других результатов 

I. Всякое большое целое число есть сумма простого и s k-ых степеней 
простых чисел, где s0 ~3klogk. 

П. Всякое большое целое число есть сумма простого и s &-ых степеней 
целых чисел где s ̂  s0 ~ 2к log- k. 

III. Всякое большое целое число есть сумма s k-ых степеней целых 
чисел, содержащих не более двух простых множителей, где s ̂  s 0 ~ 4k log* km 



Приложение 

Дальнейшие следствия из теоремы Виноградова 
о среднем значении 

В приложении мы докажем одну лемму и сформулируем различные 
ее следствия. 

Лемма. Пусть 
/ ( * ) = a Ä x F E 4 нос0 & > 0 , 

— многочлен &-ой степени с действительными коэффициентами, а Р— 
целое положительное число, удовлетворяющее неравенству 

2 & К ] Р < 1 . 
Тогда 

Q+P f Л А \ / 1 

где А и константа в символе О — абсолютные константы. Более точно, 
при £ ^ 1 4 первый член может быть заменен членом 

О (k2 P1"*), ç = - £ з (1 0 £&-ь1 . Hog log £2) * 

Д о к а з а т е л ь с т в о (ср. доказательство леммы 5.5 в тех же обозна­
чениях, за исключением выбора рг). Пусть 

Тогда 
i 

( P \ У n 

Предположим, что Рг^(п — 1 ) и Ä ) = С. Тогда 
р 

У=1 

bînpi 
2 

• 2 2 Е A #L) 
* 1 и 
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Далее, согласно замечанию к теореме 7 , 

b'npl 

2 жг-< „ Л 7 Г ЧУ n - \ - le (i—1) -ь -i- /с (1с—I) о' 

2 - 2 < 

< ( 2 Ä ' n ) * Л 

(так как | Г | < Р и \ЫЪ Г\<^) 

Поэтому 

Если [ocjl * то теорема тривиальна. 

i i _ 

4—i ^ _ ? , 4— i Предположим теперь, что Р^\сск\ . Беря ^ х = j а7.| , будем 
иметь 

i 

1 
4—1 

если только 
i 

4—1-
1 «•* I > С 

Теперь лемма получается точно таким же образом, как утверждение 
леммы 5.5. 
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i_ 

D ai-+-a)=o((ioo;*)4 . 4 \ 2 
-— — s 

2 ) <*(x)=:lix-*-O[xe~Ml08X)" J. 

3 ) Область приложимости формулы средних значений 

Т оо 

lim -i" f \l (<* •+• H) I21 Л = У d b 00 N~ 2'- 3 

T->oo y
 0

J 

4) Пусть — число целых точек внутри эллипсоида 

2] a < / * i * / ^ * (ay — a/i — целые числа). 

Пусть D — детерминант этой формы. Тогда 

А { х ) — ^ ^ 0 [ х \ о о ; " ' \ 
4 + . 

1 Tichmarsh, Quarterly Journ., 9 (1938), 106—107. 
2 Чудаков, Доклады Академии Наук СССР, XXI (1938), 421—422; Titchmarsh, 
же. 

3 Davenport, Journ. of London Math. Soc, 10 (1935), 136—138, 
* Walfisz, Travaux de Flnstitut Mathématique de Tbilisi, 5 (1938), 181—196. 

Если I а, I *"" а <С, но Я ~ Р > С , то мы берем р^Р1"* и имеет 
место тот же результат. 

Если Рх~"р < С, то имеем тривиальным образом 

р 

I s к р=рг~гр9 < с'-р рх~р < 

так как -, р

 л <^ 1 . 

Эта лемма имеет фундаментальное значение в аналитической теории 
чисел, теории римановой -̂функции и т. п. Сейчас мы дадим некоторые 
ее приложения, которые могут быть доказаны известным методом без 
каких бы то ни было существенных изменений: 

1 



LOO-KENG HUA 

The additive prime number theory 

SUMMARY 

In the following we shall summarize the results chapter by chapter. 
It is established in the I chapter that 
Let 

f(x)—a1ex
c-i h a ^ + Û Q 

be a polynomial with integer coefficients and 9 ax) = 1, and 

S(q,f(x))=^{f(x)), eq(x) = eUixf\ 

Then 
m 

2е*</<*»-т^(<7'/(х)) 

Xz=zl 

where s any positive number and с (k, e) constant depending on к and s but 
not on the coefficients of f(x). 

In chapter II, we establish that 
Let /(*i,.*2f•••»•**) be a polynomial of the £-th degree with integer 

coefficients. Suppose that the coefficients are relatively prime. Then 

p p 

%---%J(\f(x1,...,xj\)^c1(k,n,l)A(}ogXf><hn-t> 

where X denotes the maximum value of | f(x19..., хи) | for l^x^^P and 

Л = т а х ( г , ^ Т ) . 

Notice that сг and c2 are independent of the coefficients of / . 
Chapter III contains a proof of the theorem. 
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Let f(x) be an integral-valued polynomial of the degree, and 

Then, for l < v < £ , 

1 \<h (*,*) 
J j Г (a) f At < ^ (£, v, coefficients of /(*)) P J v (log P) 
о 

In chapter IV, we proved 
Theorem Bk. Let P be an integer > 0 and 

= ^ e ( o c J f c x r H H . . . H - o c 1 x ) , e ( x ) = e 2 

*=1 

Then 
X _ к ( Ä + l ) - + - e 

where 1 = 1 (к) is defined by the following table: 

к 2 3 4 5 6 7 8 9 1 0 

1 6 16 46 124 312 760 1778 4068 9190 

Moreover, for к = 2 we have a more pricise result 

о о 
^ е ( а 2 х 2 ) - ь а 1 дг) c fa 1 c fa a <b l P 8 (logP)8. 

The proof of the theorem is intermoven with the proof of the following 
Theorem Ak. Let 

f(x) = а0х* -ь ах хк~г -н . . . , 

where а0 is a positive integer < è 2 ( £ ) and ^ is an integer < b3 (к) P. Let 

p 

Then we have 

i i 

J • . - j I Sk | X . . . d4__2 d*k < c 2 (*, s) P 2 X (ft- — & -ь 2 ) -*- e 
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where 1 = 1 (k) is defined by the following table: 

k 3 4 5 6 7 8 9 10 

A 10 32 86 220 536 1272 2930 6628 

Vinogradow's mean-value theorem is proved in chapter V which is the 
keystone of the recent developments of the analytic theory of numbers. 
The proof given here seems to be simpler. 

Let 
f(jc) = <x.tx*-i - H O C ! * 

and 

Then, for b = b(k) = 2b1 = 2[j(k+l)(k-i-2)~] and £ < n < C l ( & ) , we 

have 

2 2 

0 0 

where G = (1 — a)n, a = ~ j - -

The theorem may be stated alternatively in the following form. 
The number of solutions of the system of diophantine equations 

Ъ, n 

bn — JL* ( J k + l ) - 4 - - i *(&-+-!) о 

The object of chapter VI is to prove the following theorem which is 
essentially due to Vinogradow with certain modifications which are indis­
pensable for the simultaneous problem. 

L e t I = logR Let 0 < Q < сг (A) and 

S=^e(f(p)) 

p = t(mod Q), 
Ä 

where f(x) = — .x* a 2 JC*""1 н на А 1 oc's are real numbers, (A, q) = l and 
L°<Cq^PkLTa* For any given <? 0 >0 , we have 

12 Труды Математ. нн-та, т. X X I I 
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provided that 

<r>2 w (a 0 H-<r 1 -+- l ) . 

The contents of the chapter VII is the following: 
Let f(x) be an integral-valued polynomial of the &-th degree with 

positive first coefficeint. Suppose that there does not exist an integer q such 
that f(x) = f (0) (mod q) for all integers x. The asymptotic formula for the 
number of solutions of 

f(Pi)+ — -+-f(Ps) = N, 
where the p's are primes, is established for 

f r*-bl for 1 < £ < 1 4 , 
\ # (log Л 4 - 2 - 2 log log for £ > 1 4 . 

Chapter VIII studies singular series. 
In chapter IX, we prove that every sufficiently large integer N=s(modK) 

is a sum of s k-th. power of primes, provided s ^ s 0 , where s 0 = s0(&) is defi­
ned by the following table: 

k 4 5 6 7 in general 

so 15 25 39 55 2k 4- 2m -+-7 

Here 

Гь*у&-|-Ьяг<1— 2a) 
m = = L - b * u - « ) — J ' 

_ 1 , ( ^ ( log^^l . l l og log^) , for £ > 1 4 , 
a ~ T' b ~ \ r ^ 1 , f o r * < 1 4 

and К is an integer depending only on к explicitely given in the text. 
It is the object of the chapter X and chapter XI to consider the 

following system of Diophantine equations 

А * н н р / = Л^ 

where the p's are prime. In chapter X, we establish the asymptotic formula 
for the number of solutions of the system provided s ^ s 0 , where s, is 
given by the following table: 

к 2 3 4 5 6 7 8 9 10 11 

«О 7 19 49 127 315 763 1781 4071 9193 b-Uk(k-*-l)(k+2)logk 
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In chapter XI the solvability of the system is discused under the 
condition s > s0 (— Ik2 log к). 

Chapter XII stated some results and problems which may be proved 
or solved by the method given in the memoir. 

The appendix contains a consequence of Vinogradow's mean-value 
theorem. The possible applications to the theory of ^-functions, distribution 
of primes and lattice point theory are enumerated. 
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